## SCIENTIFIC FORMULA128 $f x-1000 F / f x-5000 F$ OWNER'S MANUAL

An

$$
\mu=\frac{1}{\sqrt{*} \pi_{0}} e-\frac{4-y^{2}}{2 \theta^{2}} \quad s=1^{2}+2^{2}
$$

N多





## $f x$-1000F/fx-5000F

-The information contained herein is subject to change without notice.
-Reproduction of this manual either in part or its entirety is forbidden.

- Note that the manufacturer assumes no responsibility for any injury or loss incurred while using this manual. -Note that the manufacturer assumes no responsibility for any loss or claims by third parties which may arise through use of this unit.
-Note that the manufacturer assumes no responsibility for any damages incurred as a result of data loss caused by malfunctions, repairs or battery replacements. Physical records of important user formulas and data should be prepared to protect against such data losses.


## Foreword

Congratulations on you selection of a CASIO calculator. The latest in modern electronics and digital technology makes almost every calculating job quicker and easier. - Instantly reference the proper calculation from among 128 built-in formulas

- Create your own formulas or edit a built-in formula for storage in one of 12 user formula memories
- Instant access to a selection of 13 scientific constants - A collection of handy scientific functions

The formulas, constants and scientific functions preprogrammed into the memory of your CASIO calculator keep a powerful collection of calculating tools at your fingertips.

## Chapter 1 Getting Ready.

1-1 Switching Power ON and OFF ..... 12
1-2 Loading Batteries ..... 12
1-3 Adjusting the Contrast ..... 14
Chapter 2 Getting to Know Your Calculator
2-1 Using the Calculation Modes ..... 16
Operation Modes ..... 16
Calculation Modes ..... 16
2-2 Correcting Entries on the Display ..... 18
Changing a Character or Function ..... 18
Deleting a Character or Function ..... 19
Inserting a Character or Function ..... 19
Chapter 3 Manual Calculations
3-1 Specifying the Format of Calculation Results ..... 22
Specifying the Number of Decimal Places ..... 22
Rounding the Intermediate Result ..... 24
Specifying the Number of Significant Digits ..... 24
Shifting the Decimal Place ..... 25
3-2 Basic Calculations ..... 26
Performing Arithmetic Calculations ..... 26
Using Parentheses in Calculations ..... 27.
3-3 Making Calculations Quicker and Easier ..... 28
Using Results in Other Calculations ..... 28
Recalling Results from the Answer Memory ..... 28
Recalling Results from the Answer Memory ..... 28
Using the Answer Memory in a Calculation ..... 29
Using Constant Memories ..... 30
Storing a Value to a Constant Memory ..... 30
Storing a Calculation Result to a Constant Memory ..... 30
Recalling from a Constant Memory ..... 31
Using Constant Memories in Calculations ..... 31
Clearing a Specific Constant Memory ..... 32
Clearing All Constant Memories ..... 32
Recalling Calculation Sequences ..... 33
Correcting Errors Indicated by Error Messages ..... 34
Chaining a Series of Calculations ..... 35
3-4 Using Scientific Functions in Calculations ..... 36
Specifying the Unit of Angular Measurement ..... 36
Specifying the Unit of Angular Measurement for a Specific Value ..... 36
Using Trigonometric and Inverse Trigonometric Functions ..... 37
Using Logarithmic and Exponential Functions ..... 38
Hyperbolic and Inverse Hyperbolic Functions ( $\mathrm{fx}-5000 \mathrm{~F}$ ) ..... 39
Using Other Scientific Functions ..... 40
3-5 Working with Number Systems ..... 41
Specifying the Standard Number System ..... 41
Specifying the Number System for a Specific Value ..... 42
Converting Number Systems ..... 43
Converting to the Standard Number System ..... 43
Converting from the Standard Number System ..... 44
Converting to a Negative Value. ..... 44
Using Basic Arithmetic Operations ..... 45
Using Logical Operations ..... 46
3-6 Performing Statistical Calculations ..... 47
Performing Standard Deviation ..... 47
Inputting data ..... 47
Deleting an input data.item ..... 48
Performing calculations ..... 49
Performing Regression Calculations ..... 50
Linear Regression ..... 50
Inputting data ..... 50
Deleting an input data pair ..... 51
Performing calculations ..... 52
Logarithmic Regression ..... 53
Inputting data ..... 53
Deleting an input data pair ..... 53
Performing calculations ..... 53
Exponential Regression ..... 55
Inputting data ..... 55
Deleting an input data pair ..... 55
Performing calculations ..... 55
Power Regression ..... 57
Inputting data ..... 57
Deleting an input data pair ..... 57
Performing calculations ..... 57
3-7 Using Scientific Constants in Calculations ..... 59
Chapter 4 Built-in Formula Calculations
4-1 Using Built-in Formula Calculations ..... 64
Recalling Built-in Formulas ..... 64
Recalling a Built-in Formula Using Its Formula Number ..... 64
Sequentially Searching Through Built-in Formulas ..... 64
Canceling a Built-in Formula Recall ..... 65
Inputting Values for Built-in Formula Variables ..... 65
Obtaining the Result of a Built-in Formula ..... 66
Displaying the Built-in Formula When Inputting Values ..... 66
Shifting the Built-in Formula on the Display ..... 67
Executing the Same Built-in Formula Again ..... 67
What to Do When an Error Is Generated ..... 68
Chapter 5 User Formula Calculations
5-1 About User Formulas ..... 70
Chaining a Series of Calculations in a Formula ..... 70
5-2 Using Manually Entered User Formulas ..... 72
5-3 Understanding User Formula Memories ..... 72
5-4 Using User Formula Memories ..... 73
Storing an Original Formula ..... 73
Modifying a Built-in Formula and Storing It as a User Formula ..... 75
Executing a Formula Stored in a User Formula Memory ..... 76
Deleting User Formulas ..... 76
Deleting a Specific User Formula ..... 76
Deleting All User Formulas ..... 77
Chapter 6 Formula Library

1. Quadratic Equation Solution ..... 80
2. Simultaneous Linear Equation with Two Unknowns ..... 81
3. Simultaneous Linear Equation with Three Unknowns ..... 83
4. Cosine Theorem ..... 85
5. Heron's Formula ..... 86
6. Area of a Triangle ..... 87
7. Sine Theorem (1) ..... 88
8. Sine Theorem (2) ..... 89
9. Rectangular $\rightarrow$ Polar Coordinate Conversion ..... 90
10. Polar $\rightarrow$ Rectangular Coordinate Conversion ..... 91
11. Logarithm with Random Base ..... 92
12. Permutation ..... 93
13. Combination ..... 94
14. Repeated Permutation ..... 95
15. Repeated Combination ..... 96
16. Sum of Arithmetic Progression ..... 97
17. Sum of Geometric Progression ..... 98
18. Sum of Squares ..... 99
19. Sum of Cubes ..... 100
20. Inner Product ..... 101
21. Angle Formed by Vector ..... 102
22. Distance Between Two Points ..... 103
23. Distance Between Point and Straight Line ..... 104
24. Angle of Intersect for Two Straight Lines ..... 105
25. Area of a Triangle ..... 106
26. Area of a Rectangle ..... 107
27. Area of a Parallelogram (1) ..... 108
28. Area of a Parallelogram (2) ..... 109
29. Area of a Trapezoid ..... 110
30. Area of a Circle ..... 111
31. Area of a Sector (1) ..... 112
32. Area of a Sector (2) ..... 113
33. Area of an Ellipse ..... 114
34. Volume of a Sphere ..... 115
35. Surface Area of a Sphere ..... 116
36. Volume of a Circular Cylinder ..... 117
37. Lateral Area of a Circular Cylinder ..... 118
38. Volume of a Pyramid ..... 119
39. Volume of a Circular Cone ..... 120
40. Lateral Area of a Circular Cone ..... 121
41. Acceleration ..... 122
42. Distance of Advance ..... 123
43. Distance of Drop ..... 124
44. Law of Universal Gravitation ..... 125
45. Cycle of Circular Motion (1) ..... 126
46. Cycle of Circular Motion (2) ..... 127
47. Cycle of Circular Motion (3) ..... 128
48. Simple Harmonic Motion (1) ..... 129
49. Simple Harmonic Motion (2) ..... 130
50. Cycle of Spring Pendulum ..... 131
51. Simple Pendulum (1) ..... 132
52. Simple Pendulum (2) ..... 133
53. Cycle of Simple Pendulum ..... 134
54. Centrifugal Force (1) ..... 135
55. Centrifugal Force (2) ..... 136
56. Potential Energy ..... 137
57. Kinetic Energy ..... 138
58. Elastic Energy ..... 139
59. Energy of Rotational Body ..... 140
60. Sound Intensity ..... 141
61. Velocity of Wave Transmitted by a Chord ..... 142
62. Doppler Effect ..... 143
63. Relative Index of Refraction ..... 144
64. Critical Angle of Incidence ..... 145
65. Equation of State of Ideal Gas (1) ..... 146
66. Equation of State of Ideal Gas (2) ..... 147
67. Equation of State of Ideal Gas (3) ..... 148
68. Equation of State of ldeal Gas (4) ..... 149
69. Quantity of Heat ..... 150
70. Coulomb's Law ..... 151
71. Magnetic Force ..... 152
72. Resistance of a Conductor ..... 153
73. Frequency of Electric Oscillation ..... 154
74. Average Gaseous Molecular Speed ..... 155
75. Electronic Kinetic Energy in Magnetic Field ..... 156
76. Strength of Electric Field ..... 157
77. Energy Density Stored in Electrostatic Field (1) ..... 158
78. Energy Density Stored in Electrostatic Field (2) ..... 159
79. Energy Stored in Electrostatic Capacity (1) ..... 160
80. Energy Stored in Electrostatic Capacity (2) ..... 161
81. Energy Stored in Electrostatic Capacity (3) ..... 162
82. Force Exerting on Magnetic Pole ..... 163
83. Magnetic Energy of Inductance ..... 164
84. Electrostatic Capacity between Parallel Plates ..... 165
85. Impedance in LR Series Circuit ..... 166
86. Impedance in RC Series Circuit ..... 167
87. Composite Reactance in LC Series Circuit ..... 168
88. Impedance in LRC Series Circuit ..... 169
89. Impedance in LRC Parallel Circuit
170
170
90. Series Resonance Circuit ..... 171
91. Parallel Resonance Circuit
172
172
92. Power Factor ..... 173
93. Joule's Law (1) ..... 174
94. Joule's Law (2)
175
175
95. Induced Electromotive Force ..... 176
96. Voltage Gain
177
177
97. Current Gain ..... 178
98. Power Gain
99. Power Gain ..... 179
100. $\Delta \rightarrow Y$ Conversion ..... 180
101. $Y \rightarrow \Delta$ Conversion ..... 181
102. Minimum Loss Matching ..... 182
103. Change in Terminal Voltage of R in RC Series Circuit ..... 183
104. Probability Function of Binomial Distribution
184
184
105. Probability Function of Poisson's Distribution ..... 185
106. Probability Function of Geometric Distribution ..... 186
107. Probability Function of Hypergeometric Distribution ..... 187
108. Probability Function of Exponential Distribution ..... 188
109. Probability Function of Uniform Distribution
189
189
110. Normal Distribution (Probability Density Function) ..... 190
111. Normal Probability Function
191
191
112. Deviation
192
192
113. Tension and Compression ..... 193
114. Shearing Stress (1)
194
194
115. Shearing Stress (2) ..... 195
116. Enthalpy
196
196
117. Efficiency of Carnot's Cycle (1) ..... 197
118. Efficiency of Carnot's Cycle (2)
198
198
119. Bernoulli's Theorem (1) ..... 199
120. Bernoulli's Theorem (2) ..... 201
121. Bernoulli's Theorem (3)
203
203
122. Equation of Continuity (1) ..... 205
123. Equation of Continuity (2)
206
206
124. Module (1) ..... 207
125. Module (2) ..... 208
126. Module (3) ..... 209
127. Module (4) ..... 210
128. Reynold's Number ..... 211
129. Calculations Using a Stadia ..... 212
Appendices
Appendix A Keys and Indicators ..... 214
General Guide ..... 214
Display ..... 215
Upper dot display ..... 215
Indicators ..... 215
Lower display ..... 215
Power Switch ..... 215
Key Operations and Their Functions ..... 216
Apperidix B What to Do When an Error Occurs ..... 224
Error Message Table ..... 224
Appendix C Technical Reference ..... 225
Order of Operations ..... 225
About Stacks ..... 226
Maximum Value Sizes ..... 227
Display Register ..... 227
Number of input characters ..... 227
How to Count User Formula Steps ..... 228
Input Ranges of Scientific Functions ..... 228
Formulas Used for Statistical Calculations ..... 230
Standard Deviation ..... 230
Mean ..... 230
Regression ..... 230
Specifications ..... 231
-This unit is composed of precision electronic components, and should never be disassembled. Do not drop it or otherwise subject it to sudden impacts, or sudden temperature changes. Be especially careful to avoid storing the unit or leaving it in areas exposed to high temperature, humidity or large amounts of dust. When exposed to low temperatures, the unit will require more time to display answers and may even fail to operate. The display will return to normal once normal temperature is attained.

- Batteries should be replaced every 2 years even if the unit is not used for extended periods. Never leave dead batteries in the battery compartment. They can leak and cause damage to the unit.
- Strong static electricity can cause the display to weaken or lock up of the unit's functions. Should this occur, remove the batteries, replace them, and then attempt operation again.
- Avoid using volatile liquids such as thinner or benzine to clean the unit. Wipe the unit with a soft, dry cloth or a cloth that has been dipped in a neutral detergent solution and wrung out.
- If malfunction of the unit should occur, either bring or send the unit to your retailer or the nearest CASIO dealer.
Be sure to clearly explain the problem in detail.
-Before assuming malfunction of the unit, be sure to carefully reread this manual and ensure that the problem is not due to insufficient battery power, programming or operational errors.


## Chapter 1 <br> Getting Ready



This section describes everything you need to know to set up your Casio calculator for operation. It includes such important information as how you change batteries and adjust the contrast of the display.

## 1-1 Switching Power ON and OFF

The power switch is located on the left edge of the calculator. You switch power ON by sliding the switch up, and OFF by sliding the switch down.
Even if you leave the calculator ON, an Auto Power OFF function saves valuable battery power. This function automatically switches power OFF if you don't use the calculator for about six minutes. To switch power back on after operation of the Auto Power OFF function, simply press the ac key.
Note that nothing in the calculator's memory is lost when the power is switched OFF.

## 1-2 Loading Batteries

Power is supplied to your calculator by two lithium batteries (CR2032). You should replace the batteries in the calculator when the characters on the display become too dim to read, even if you make the contrast darker (see 1-3 Adjusting the Contrast). Remember to always replace both batteries.

## IMPORTANT

- To protect your calculator against damage from leaking batteries, replace batteries once every two years no matter how much you use it.
-Remember that removing the batteries cuts off the power to the calculator so any formulas (except the preprogrammed formulas) or data you have in memory may be lost. If you load the new batteries quickly enough, it is possible that you will be able to change batteries without losing any information. In any case, you should always check the contents of the memory and write down any important stored information before you remove the batteries from the calculator.
- If the battery power should be allowed to decrease or if batteries are removed from the unit for extended periods, user generated formulas and memory contents may be erased or altered. In this case, the RESET button located on the back of the unit should be pressed using pointed object. All memory contents and user generated formulas will be erased.
- Always keep batteries out of the reach of small children. Contact a doctor immediately if a battery is accidentally swallowed.
- Never dispose of old batteries in such a way that they will be incinerated. Batteries may explode if exposed to fire.


## - - Procedure

(1) Switch the power of the calculator OFF.
(2) Loosen the two screws on the back of the calculator and remove the back cover.
(3) Remove the screw fastening the battery holder in place and remove the holder.
(4) Remove the two batteries (if present) from the calculator.

* You can remove the batteries by turning the calculator with its back downwards and tapping the corner of the calculator lightly on a desk or table.
(5) Wipe two new batteries with a soft cloth and load them into the calculator with their positive poles (indicated by the $\oplus$ mark) facing upwards.
(6) Replace the battery holder and fasten it in place using its original screw.
(7) Replace the back cover of the calculator and its two screws.



## 1-3 Adjusting the Contrast

The characters that are shown on the display of the calculator may sometimes appear dim because of your viewing angle or because the batteries powering the calculator have become weak. You can adjust the contrast of the display using a dial located on the right edge of the calculator.


If you turn the dial in the direction shown by the arrow in the illustration, the characters on the display become darker. Turning the dial in the opposite direction makes the characters lighter. If the display is difficult to read even after you make the contrast as dark as possible, it might mean that you need to replace the batteries.

## Chapter 2

## Getting to Know Your Calculator



This Chapter gives you some basic information that is applicable to the general use of your calculator. It describes the use of calculation modes, and provides important information on how you can change, delete, and insert characters on the display. You can find detailed descriptions of the keys and other controls in the general guide in Appendix A in the back of this manual.

## 2-1 Using the Calculation Modes

Your calculator can perform a large number of sophisticated calculations. In order to make operation as easy as possibie, the calculator is programmed so that calculations are assigned to specific modes. You can select the mode you need using the wooed key in the combinations noted below. Be sure that the calculator is set to the correct mode before you begin your calculation.

## - Operation Modes

The operation mode you select determines if you will be doing a calculation, storing or editing a formula, or deleting a formula.

## -RUN mode $\square$

Normal calculations where values are entered manually, and formula execution.
Scientific calculations can also be performed in this mode.

## -WRT mode

Formula storage and editing.
The symbol WRT appears on the display when you select this mode.

## -PCL mode №CE 3

Deletion of stored formulas.
The symbol PCL appears on the display when you select this mode.

## ■ Calculation Modes

You should also select the proper calculation mode in accordance with the type of operation you will perform.

## -COMP mode 뜨N요 +

General calculations where values are entered manually, including calculations which contain scientific functions.

## - Base-n mode

Binary, octal, decimal, hexadecimal conversions/calculations, logical operations. One of the following symbols appears at the right of the display to indicate the currently selected number system when you select this mode.
b: binary, o: octal, d: decimal, h: hexadecimal

This mode cannot be selected for calculations which contain scientific functions or when using the formula function.

## - SD mode $\times$ OOEE

Standard deviation calculations (single-variable statistics).
The symbol SD appears on the display when you select this mode.

## - LR mode

Regression calculations (paired-variable statistics).
The symbol LR appears on the display when you select this mode.

## 2－2 Correcting Entries on the Display

After you have input a calculation formula，you can make any changes you need without having to restart input from the beginning．

## －Changing a Character or Function

You can make changes in a display at any time by moving to the character or function to be changed and then pressing the key for the correct entry．
（1）Use the cursor keys to move the cursor to the location of the correction．
＊The cursor is the small flashing line on the display that indicates the current input position．The 国 and $\Leftrightarrow$ cursor keys are used to move the cursor to the left and right．
（2）Press the key for the correct character or function．
（3）Press 選 to perform the calculation or use the cursor keys to move the cursor to another position．

## Example 1

Change 122 to 123.
（1）2 2
$\theta$
（3）

| 122 |
| :--- |
| 122 |
| 123 |

## Example 2

Change $\cos 60$ to $\sin 60$ ．


回回
5

| $\cos 60$ |
| :---: |
| 60 s 60 |
| sin 60 |

## ■ Deleting a Character or Function

You can delete characters or functions from a display by moving the cursor to the delete position and then pressing the 国 key．
（1）Use the cursor keys to move the cursor to the location of the deletion．
（2）Press the 開 key to delete the character or function．
（3）Press 四 to perform the calculation or use the cursor keys to move the cursor to another position．

## Example

Change $369 \times 2$ to $369 \times 2$ ．
（3）
봅

$$
\begin{aligned}
& 369 \times \times 2 \\
& \hline 369 \times \underline{2} \\
& \hline
\end{aligned}
$$

## ■ Inserting a Character or Function

You can insert characters or functions between other characters or functions on the display by moving the cursor to the insert position and then pressing［safif［us） to enter the insert mode for the insertion．
（1）Use the cursor keys to move the cursor to the location of the insertion．
（2）Press［⿶凵nH7［1．to enter the insert mode．
＊When you press［smif［ilis，the space that is opened is displayed as＂ 7 ＂．Though the will remain within the calculation even if nothing is inserted，it is dis－ regarded during calculations．Calculations will execute normally when you press the 国酉 key even when［］is contained within the calculation．You can exit the

（3）Press the keys for the characters or functions you wish to insert．
（4）Press 棞 to perform the calculation or use the cursor keys to move the cursor to another position．

## Example

Change $2.36^{2}$ to $\sin 2.36^{2}$.
(2) 3 国

봅 봅
s्shtf IIS
sin

| $2 \cdot 36^{2}-$ |
| :--- |
| $2 \cdot 36^{2}$ |
| 2. $366^{2}$ |
| sin 2 2 362 |

## Chapter 3 <br> Manual Calculations



In this manual, the term manual calculations is used to mean calculations that you enter by hand, using the keys. These calculations are different from formula calculations and formula memory calculations which are explained in another part of this manual.

This Chapter describes the manual calculations: which you can perform, as well as certain functions which make handling such calculations quicker and easier.

The calculations shown in the examples in this section assume that you have a certain level of familiarity with mathematical principles and terms. Many of the operations described in this section are illustrated by simply showing examples, without including detailed explanations of fundamental mathematical operations.

## 3-1 $\quad$ Specifying the Format of Calculation Results

You can change the precision of calculation results by specifying the number of decimal places or the number of significant digits. You can also shift the decimal place of a displayed value three places to the left or right for one-touch conversions of metric weights and measures.
*You cannot specify the display format (FIX, SCI) while the calculator is in the Base- $n$ mode. Such specifications can only be made if you first exit the Base-n mode.

## Specifying the Number of Decimal Places

The calculator always performs calculations using a 10-digit mantissa and 2-digit exponent, and results are stored in memory as a 12-digit mantissa and 2-digit exponent no matter how many decimal places you specify. Intermediate results and final results are then automatically rounded off to the number of decimal places you have specified.

It should be noted that displayed results are rounded to the specified number of decimal places, but stored results are normally not rounded.
(1) Perform a calculation or enter à value.
(2) Press the 図e key.
(3) Press №s 77.
(4) Press a number key from [0] through 9 to specify the number of decimal places. "At this time you should be able to see "Fix" on the display. You count the number of decimal places from left to right, starting to the right of the decimal point. This means that the value 1.234 has three decimal places.
(5) Press momex
*This cancels any speciffcation and returns the number of decimal places to the original value.

If you do not perform step (5), the number of decimal places you specified in step
(4) will remain in effect, even if you switch the power of the calculator OFF.


## Rounding the Intermediate Result

Compare the final result you obtained in the previous example with the final result of the following example．

| Example | Operation | Display |
| :---: | :---: | :---: |
| $200 \div 7 \times 14=400$ | 200【7×14逐 | 400 |
| （rounded to 3 decimal places，with rounding of the stored intermediate result） |  | 400.000 |
|  | 20007 罭 | 28． 571 |
|  | （The intermediate result is auto－ matically rounded to the specified three decimal places．） | － |
|  |  | 28． 571 |
|  | （This roundes the stored intermediate result to the specified three decimal places．） |  |
|  | $\boldsymbol{x}$ | 28． $571 \times$ |
|  | 14匡E | 399．994 |
|  |  | 399．994 |

## ■ Specifying the Number of Significant Digits

This specification is used to automatically round intermediate results and final results to the number of digits you have specified．

As with the number of decimal places，displayed results are rounded to the speci－ fied number of digits，but stored results are normally not rounded．
（1）Perform a calculation or enter a value．
（2）Press the 涃 Key．
（3）Press 1000 ［8］．
（4）Press a number key from through（representing 1 through 10）to specify the number of significant digits．
＂At this time you should be able to see＂Sci＂on the display．
The value 1.234 has four significant digits．
（5）Press №ot 回［xx．
＊This cancels any specification and returns the number of significant digits to the original value．

If you do not perform step（5），the number of significant digits you specified in step（4）will remain in effect，even if you switch the power of the calculator OFF．

| Example | Operation | Display |
| :---: | :---: | :---: |
| $100 \div 6=16.66666666 \cdots$ | $100 \int 6$ 気 <br> （m00］（ 8 ］［50］（ 5 significant digits） <br>  | $\begin{array}{r} 16.66666667 \\ 1.666701 \\ 16.66666667 \end{array}$ |

## Shifting the Decimal Place

You can use the 且 key to shift the decimal point of the displayed value three places to the left or right．Each 3－place shift to the left is the same as dividing the value by 1000 ，and each shift to the right is the same as multiplying by 1000 ．This means that this function is useful when converting metric weights and measures to other metric units．

| Example | Operation | Display |
| :---: | :---: | :---: |
| $123 \mathrm{~m} \times 456=56088 \mathrm{~m}$ | 123区456閶 | 56088. |
| $=56.088 \mathrm{~km}$ | ［100 | 56．08803 |
| $78 \mathrm{~g} \times 0.96=74.88 \mathrm{~g}$ |  | 74.88 |
| $=0.07488 \mathrm{~kg}$ | （ | $0.07488{ }^{03}$ |

## 3－2 $\quad$ Basic Calculations

Basic calculations are those which include such arithmetic operations as addi－ tion，subtraction，multiplication，and division，as well as terms contained within parentheses．To input basic calculations press keys for numbers，operators，and parentheses in left－to－right sequence，just as the calculation would be written on paper．

## －Performing Arithmetic Calculations

（1）Enter the calculation．
＊Press the proper keys in the left－to－right sequence of the calculation as it is written．Use the - key for subtraction，and the key in front of negative numbers．
＊For mixed calculations，multiplication and division are given priority over addi－ tion and subtraction（so $3+5 \times 6$ is performed as $5 \times 6 \rightarrow 30+3 \rightarrow 33$ ）．Appen－ dix C contains information on the order of other operations．
（2）Press the 国 key to obtain the result of the calculation．
－Results of 10 －billion or greater or less than 0.01 are displayed in exponential format．
－Internal calculations are performed with a 12－digit mantissa，with the displayed result rounded off to 10 digits．

| Example | Operation | Display |
| :---: | :---: | :---: |
| $23+4.5-53=-25.5$ |  | $-25.5$ |
| $56 \times(-12) \div(-2.5)=268.8$ |  | 268.8 |
| $12369 \times 7532 \times 74103=$ | 12369×7532×74103（xx | 6． $903680613^{12}$ |
| $6.903680613 \times 10^{12}$ |  | Exponential display $\rfloor$ |
| （6903680613000） |  |  |
| $\begin{aligned} & \left(4.5 \times 10^{75}\right) \times\left(-2.3 \times 10^{-79}\right)= \\ & -1.035 \times 10^{-3} \end{aligned}$ |  | 1．035－03 |
| （－0．001035） |  |  |
| $\left(1 \times 10^{5}\right) \div 7=14285.71429$ | 1 同 5 － 7 成里 | 14285.71429 |
| $\left(1 \times 10^{5}\right) \div 7-14285=0.7142857$ |  | 0．7142857 |
| $3+\underline{5 \times 6}=33$ | $3 \boldsymbol{4} 5 \times 6$ 匡坷 | 33. |
| $7 \times 8-4 \times 5=36$ | $7 \times 8$－ $4 \times 5$ 國 | 36. |
| $1+2-3 \times 4 \div 5+6=6.6$ |  | 6． 6 |

## - Using Parentheses in Calculations

Insert open parentheses by pressing the 0 key, and closed parentheses by pressing the $\square$ key.


## 3－3 Making Calculations Quicker and Easier

## ■ Using Results in Other Calculations

Once you obtain the result for a calculation by pressing the Exe key you can use that result in further calculations if it is still displayed．

## Example 1

$3 \times 4=12$ ，continuing with $/ 3.14$
3区4閲
（followed by） 3.14
［昰

| $12.73 .14 \ldots$ |
| ---: |
| 3.821656051 |

## Example 2

Compare： $1 / 3 \times 3$
$1 / 3$ ，followed by $\times 3$
$1 \boldsymbol{\square} 3 \boldsymbol{x}$ 国
1 \3画
（followed by） $\mathbf{x} 3$ 国x

|  |
| ---: |
| 0.333333333 |
| 0.999999999 |

## －Recalling Results from the Answer Memory

The answer memory automatically stores the result of the last calculation that you have performed．Notice that the result is stored automatically，which makes it differ－ ent from the constant memories described later．The contents of the answer memory are updated whenever you press the Exe key after you input a value or calculation．You can check the contents of the answer memory using the follow－ ing procedure．

## －Recalling Results from the Answer Memory

（1）Press sumfl followed by the anas key．
＊This causes＂Ans＂to appear on the display to represent the contents of the answer memory．
（2）Press the 龱相 key．
＂This step is necessary to change＂Ans＂to the actual value stored in the an－ swer memory．

## - Using the Answer Memory in a Calculation

You can recall "Ans" at any time, and even use it within a formula or calculation. Remember, when you press the 四 key at the end of the calculation, the answer memory contents change to the result of the calculation you have just performed.

## Example

Perform the calculation $123+456=579$, followed by $789-579$ (which is the result of the previous calculation).
(1) 2 (4) 5 [致
(7] [8] 9 패가) Ans
ExE

| 789. |
| :---: |
| -210 |

As with the constant memories, you do not need to press the $\mathbb{X}$ key when the answer memory is used in a multiplication operation.

## Example

Operation Input
$2 \times$ Ans $\quad$ 2)

Note that the contents of the answer memory are not changed when you use the Exax key to store a value in a constant memory (see the following section for details. on constant memories).

## Example

7845]
(Result stored in answer memory.)

134.

Check answer memory contents.)

(Value stored in constant memory.)

134
(Check answer memory contents.)

## ■ Using Constant Memories

Your calculator is equipped with ten independent constant memories which let you individually store values and use them in calculations．You specify these memories by pressing the 函 key followed by any number key from 0 through（9）．

## －Storing a Value to a Constant Memory

（1）Enter the value to be stored．
（2）Press the $\square$ key．
（3）Specify a constant memory number．
（4）Press 国．

## Example

Store 123 in constant memory IKO．

關
$123 \rightarrow \mathbb{K} 0$

## －Storing a Calculation Result to a Constant Memory

（1）Perform the calculation．
（2）Press the $\square$ key．
（3）Specify a constant memory number．
（4）Press 땂．

## Example

Store the result of $2+2$ in constant memory IK5．
2． $\boldsymbol{P}$（2） 6
Ex］

$$
2+2 \rightarrow \mathbb{I K} 5
$$

## - Recalling from a Constant Memory

(1) Specify a constant memory number.
(2) Press Ex日
*This step is necessary to change the displayed constant memory number to the actual value stored in the constant memory.

## Example

Recall the value stored in constant memory IKO.


$$
\mathbb{I K} 0
$$

123. 

## - Using Constant Memories in Calculations

You can use values stored in constant memories by simply specifying the memory number where the value would normally appear in a calculation. You can store the final result of a calculation in a constant memory by specifying the constant memory where the equal sign would normally appear in the calculation.

## Example 1

Subtract 30 from the value stored in constant memory $\mathbb{K 0}$ (123) and store the result in constant memory $\mathbb{K} 1$.


$$
\mathrm{KK} \theta-30 \rightarrow \mathrm{~K} \mathrm{~K}
$$

## Example 2

Subtract the value stored in $\mathbb{K} 1$ (93) from the value stored in $\mathbf{I K}^{(123)}$ ).

EXE

| $\mathbf{K} 0$ - $\mathbf{K 1} 1$ |
| :--- |
|  |

## Example 3

Add 23 to the value stored in constant memory $\mathbb{K O}$ (123) and store the result in constant memory IK0.

梐

$$
\mathrm{IK} 0+23 \rightarrow \mathrm{IK} 0
$$

146. 

Note that you do not need to press the $\mathbf{X}$ key when a variable memory is used in a multiplication operation.


## - Clearing a Specific Constant Memory

(1) Press the 0 key.
(2) Press the $\square$ key.
(3) Specify the number of the constant memory to be cleared.
(4) Press the 国e key.

## Example

Clear constant memory $\{\mathrm{K} 0$.
[0] (sant $\square$

- Clearing All Constant Memories
(1) Press the [84it key.
(2) Press the now key.
(3) Press the 狪 key.


## Example

Clear all constant memories.
[shif (mol


Note that constant memories are not cleared when you press the ace key switch the power of the calculator OFF.

## - Recalling Calculation Sequences

After you obtain the result of a calculation by pressing the Exa key you notice a mistake: Or maybe you have to do a long series of calculations which are only slightly different from each other. With your Casio calculator, you don't need to input the entire calculation sequence from beginning to end. Just do the following.

*Which key you should press depends on where in the sequence the mistake is located.
*The $\square_{0}$ key shows the sequence with the cursor located on the left of the display, under the first character in the sequence.
*The key shows the sequence with the cursor located on the right of the display, following the last character in the sequence.

(3) Make the required corrections.
*Corrections are made using the delete and insert procedures described in 2-2. Correcting Entries on the Display.
(4) Move the cursor to another location, or press the Exas key to execute the new sequence.

## Example

Change $4.12 \times 3.58+6.4=21.1496$ to $4.12 \times 3.58-7.1=7.6496$


| 2.1 .1496 |
| ---: |
| $4.12 \times 3.58+6.4=$ |
| $4.12 \times 3.58 \pm 6.4$ |
| $4.12 \times 3.58-7.1$ |
| 7.6496 |

It should be noted that calculation sequences cleared when the $A C$ key is pressed, the power of the calculator is switched OFF, or the mode is changed.

## ■ Correcting Errors Indicated by Error Messages

Certain errors are pointed out by the appearance of the error messages described in Appendix B when the 龱 key is pressed．Your Casio calculator lets you recall the calculation sequence and instantly locate the error．

When an error is displayed：
（1）Press either the © 요 key（it doesn＇t matter which）．
＊The calculation sequence appears on the display with the cursor positioned automatically at the location of the error．
（2）Make the required corrections．
＊Corrections are made using the delete and insert procedures described in 2－2 Correcting Entries on the Display．
（3）Press the 匯 key to execute the new sequence．

## Example

Input of $14 / 0 \times 2.3$ causes an error to appear（because division by zero is impos－ sible）．Change the sequence to $14 / 10 \times 2.3$ ．

国（or
（勾（silifi les 1
Ex

| Ma ERROR |
| :---: |
| $14 / 0 \times 2.3$ |
| Error occurs here． |
| 1 |

$14 / 10 \times 2.3$
3． 22

## ■ Chaining a Series of Calculations

Your Casio calculator lets you chain multiple calculations into a series that is treated as a single calculation sequence. You can use one of three different symbols to connect each calculation in the chain. Chained calculations are performed one-by-one, in the same left-to-right sequence as they would appear when written down.
":" - This connector tells the calculator to pause until the Exe key is pressed, and retains the values which have been assigned to variables.
" 4 " -This connector tells the calculator to pause until the 国 key is pressed, and clears the values which have been assigned to variables.
" $\rfloor$ " -This connector tells the calculator to clear the values which have been assigned to variables, without displaying any intermediate results.

Note that each portion of a chained series is actually an individual calculation. This means that you couldn't use a sequence such as the following:

## 123《456

## Example

Chain $6.9 \times 123$ and $123 / 3.2$
The above sequence can also be input as:

##  <br> 

[ [x]
[ [xE]


| $\square$ |
| ---: |
| 88.4375 |

## 3－4 Using Scientific Functions in Calculations

## m Specifying the Unit of Angular Measurement

You will often find it necessary to work with various units of angular measurement when performing calculations that include scientific functions．The following shows the unit and the indicator which appears on the display for each specification of a unit of angular measurement．

| Input | Unit | Display |
| :---: | :---: | :---: |
| ［｜006［4］ | Degrees | ■ |
| ［0076）［5］ | Radians | ［ |
| ［100］ 6 | Grads | T |

The unit of angular measurement you specify remains in effect until you change it，even if you switch the power of the calculator OFF．
＊You cannot specify the unit of angular measurement（degrees，radians，grads） while the calculator is in the Base－$n$ mode．Such specifications can only be made if you first exit the Base－n mode．

## E Specifying the Unit of Angular Measurement for a Specific Value

No matter what unit of angular measurement is now specified，you can still input a value from another unit of angular measurement．The following shows which keys you should press for each unit of angular measurement immediately after you input the value．

| Input | Unit |
| :---: | :---: |
| ［54if］［000［4］ | Degrees |
| ［5417t］［000［5］ | Radians |
|  | Grads |


| $\therefore$ Example | Operation | Display |
| :---: | :---: | :---: |
| 4.25 radians to degrees | ［100E 4 因 $\rightarrow$＂ロ＂ |  |
|  | 4.25 ［sirn］［000］［5］［xa | 243．5070629 |
| 1.23 grads to radians | HM00］（5）［xat $\rightarrow$＂⿴囗 |  |
|  |  | 0． 019320794 |
| 7.89 degrees to grads |  |  |
|  |  | 8． 766666667 |
| Result in degrees |  |  |
| $47.3^{\circ}+82.5 \mathrm{rad}=4774.20181$ |  | 4774． 20181 |
| $12.4{ }^{\circ}+8.3 \mathrm{rad}-1.8 \mathrm{gra}=$ |  |  |
| 486.33497 |  | 486.33497 |


| Example | Operation | Display |
| :---: | :---: | :---: |
| Result in radians |  |  |
| $24^{\circ} 6^{\prime} 31^{\prime \prime}+85.34 \mathrm{rad}=$ |  |  |
| 85.76077464 |  |  |
| ... | [1006] [4] 85.34 比 | 85. 76077464 |
| Result in grads |  |  |
| $36.9^{\circ}+41.2 \mathrm{rad}=2663.873462$ |  |  |
|  | [5] [戌] | 2663.873462 |

## ■ Using Trigonometric and Inverse Trigonometric Functions

You can include trigonometric and inverse trigonometric functions in calculations. You should also check that the unit of angular measurement is set to the unit you want the final result to be.

| Example Operation | splay |
| :---: | :---: |
|  <br> *If the result of a calculations that uses degrees as the unit of angular measurement is longer than eight digits, the result is displayed from the left, with the right side digits being cut off. This is only for the display, and the entire result is stored internally as a decimal value. | 0. 897859012 <br> $-0.612800788$ <br> 0.597672477 <br> 30. <br> 0. 785398163 <br> 0. 249999999 <br> 36. 53844577 <br> $36^{\circ} 32^{\circ} 18.4$ |


| Example Operation | Display |
| :---: | :---: |
|  | $\begin{aligned} & 68^{\square} 13^{\circ} 13.53 \\ & 0.299410404 \end{aligned}$ |

## - Using Logarithmic and Exponential Functions

You can include logarithmic and exponential functions in calculations.

| U: Example | Operation | Display. |
| :---: | :---: | :---: |
| $\begin{array}{r} \log 1.23\left(\log _{10} 1.23\right)= \\ 8.9905111 \times 10^{-2} \end{array}$ | (160) 1.23 Ex] | 0.089905111 |
| $\ln 90\left(\log _{e} 90\right)=4.49980967$ | [170 90 比 | 4. 49980967 |
| $\log 456 \div \ln 456=0.434294481$ |  | 0. 434294481 |
| $10^{1.23}=16.98243652$ |  | 16.98243652 |
| (Anti-logarithm of common logarithm 1.23) |  |  |
| $e^{4.5}=90.0171313$ |  | 90.0171313 |
| (Anti-logarithm of natural logarithm 4.5) |  |  |
| $10^{4} \cdot e^{-4}+1.2 \times 10^{2.3}=422.5878667$ |  [54n] $10 \times 2.3$ [x] | 422.5878667 |
| $3^{6}=729$ |  | 729. |
| $2^{1 \prime}=2048$ | 2 (x) 1 (x) 1 [x] | 2048. |
| $5.6{ }^{23}=52.58143837$ |  | 52.58143837 |
| $\sqrt[7]{123}\left(=123^{\frac{1}{7}}\right)=1.988647795$ |  | 1.988647795 |
| $(78-23)^{-12}=1.305111829 \times 10^{-21}$ |  | 1. $305111829-21$ |
| $2+3 \times \sqrt[3]{64}-4=10$ |  | 10. |
| $2 \times 3.4^{(5+6.7)}=3306232.001$ |  | 3306232.001 |

## ■ Hyperbolic and Inverse Hyperbolic Functions (fx-5000F)

You can include hyperbolic and inverse hyperbolic functions in calculations.


Using Other Scientific Functions

| Example | Operation | Display |
| :---: | :---: | :---: |
| $\sqrt{2}+\sqrt{5}=3.65028154$ |  | 3. 65028154 |
| $2^{2}+3^{2}+4^{2}+5^{2}=54$ |  | 54 |
| $\frac{1}{\frac{1}{3}-\frac{1}{4}}=12$ |  | 12 |
| $8!(=1 \times 2 \times 3 \times \cdots \cdot \times 8)=$ | $8{ }^{*} \times(x)$ [xe <br> *With the fx-5000F... press ㅍut [x] | 40320. |
| $\sqrt[3]{36 \times 42 \times 49}=42$ |  | 42 |
| Random number generation (pseudo-random number from 0.000 to 0.999 ) | [sintir [ant [xe | (Ex.) 0.792 |
| $\sqrt{13^{2}-5^{2}}+\sqrt{3^{2}+4^{2}}=17$ |  <br>  | 17. |
| $\begin{aligned} \sqrt{1-\sin ^{2} 40^{\circ}} & =0.766044443 \\ & =\cos 40^{\circ} \end{aligned}$ |  <br>  | 0.76604 .4443 |
| (Proof of $\cos \theta=\sqrt{1-}-\sin ^{2} \theta$ ) |  | 40 . |
| $\frac{1}{2!}+\frac{1}{4!}+\frac{1}{6!}+\frac{1}{8!}=$ |  <br> $[x+x] 8 x][x]$ <br>  | 0. 543080357 |
| Absolute value of common logarithm of $\frac{3}{4}$. |  | 0. 124938736 |
| $\left\|\log \frac{3}{4}\right\|=0.124938736$ |  |  |

## 3－5 Working with Number Systems

The Base－n mode lets you perform a variety of operations with values of different number systems．These include actual calculations，conversions from one num－ ber system to another，and logical operations．The Base－n mode is very useful because it lets you move among binary，octal，decimal and hexadecimal number systems．Due to the complexity of some conversions，however，you must observe the following precautions when using this mode．
－You cannot use scientific functions and the formula function in the Base－$n$ mode． －You cannot specify the unit of angular measurement（degrees，radians，grads） or the display format（FIX；SCI）while the calculator is in the Base－n mode．Such specifications can only be made if you first exit the Base－n mode．
－Only integers are valid in the Base－$n$ mode；so the calculator ignores any opera－ tion of the - key，and decimal parts of calculation results are automatically cut off． －Negative binary，octal，and hexadecimal numbers are expressed using their twos＂ complements．
－Alphabetic characters A through F used in hexadecimal notation are distinguished from standard alphabetic characters as follows．

| Key | Display |
| :---: | :---: |
|  | 1 A |
| （18） | IB |
| （c） | C |
| 回 | D |
| त区区区 | 正令 $\therefore$ |
| $\therefore$ 园 | 不： |


| （fx－1000F） | （tx－5000F |
| :---: | :---: |
| 兆 $=$ x | （ $A=x$ |
| （B］$=$（ $x^{\prime}$ | $\therefore$ 禺 $=\square$ |
| $\square=0$ | （0）$=$ W0 |
| （10）＝［imin | （迥 $=$（sin） |
| $=\cos$ | ＝ $\cos$ |
| $f=\tan$ | IT $=$ Itan |

You can specify the number system for all values being used in the current oper－ ation，and you can also specify the number system for a specific value：

## －Specifying the Standard Number System

The standard number system you specify remains in effect until you change it， even if you switch the power of the calculator OFF．
（1）Press woor $\boldsymbol{\square}$ for the Base－$n$ mode．
（2）Specify the number system by pressing a number system key followed by the Exel key．

The following shows the number systems that you can specify，as well as the indi－ cator which appears on the display and the maximum size of values that you can use in each number system．

| Key | Number System | Display | Maximum Size |  |
| :---: | :---: | :---: | :---: | :---: |
| ［通葍 | Binary | b | 10 digits | 国 $=$［009 |
| 比國 | Octal | 0 | 10 digits． | （1000 $=$［靣 |
| ［10e） | Decimal | －d | 10 digits | （10x）$=\square$ |
| 戒国 | Hexadecimal | $\because h$ | 8 digits | 里达 $=$ x |

## －Specifying the Number System for a Specific Value

No matter what standard number system is now specified，you can still input a value from another number system．The following shows which keys you should press for each number system immediately before you input the value．

（b）$=0$
$0 \quad 0=10$
（d）$=\square$
$n=x$

The number system you specify is applicable only for the value you input immedi－ ately following the above specifications．

You must specify the number system when you input a value whenever any of the numbers used in the value are outside the range of the currently specified standard number system．The following shows the values which are valid in the number systems used by this calculator．

| Number System： | Valid Values |
| :--- | :--- |
| Binary | 0,1 |
| Octal | $0,1,2,3,4,5,6,7$ |
| Decimal | $0,1,2,3,4,5 ; 6,7,8,9$ |
| Hexadecimal | $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$ |

## - Converting Number Systems

You can convert a value from one number system to another using one of two different methods by specifying the applicable number system.

## -Converting to the Standard Number System

(1) Specify the standard number system.
(2) Enter the number system for a value and input the value.
(3) Press the 国球 key.

－Converting from the Standard Number System
（1）Specify the standard number system．
（2）Enter a value（of the standard number system）．
（3）Press the 比 key．
（4）Specify a different standard number system．
（5）Press the 润 key．
＊The displayed value changes to the number system specified in this step．

| Example | Operation | Display |
| :---: | :---: | :---: |
| $\bigcirc$ |  | $\because$ |
|  |  | 22．d |
| Binary equivalene of $22_{10}$ | Eiin［x］ | $10110 . \mathrm{b}$ |
| Octal equivalent of $22_{10}$ | ［00t）［xx］ | 26．o |
| Hexadecimal equivalent of $22_{10}$ | ［Hex）［xx］ | 16． h |

## －Converting to a Negative Value

Use the（102 key to get the negative equivalent of a binary，octal，or hexadecimal value，expressed as its twos＇complement．

| $\because \therefore$ Example | Operation $\cdots$ | Display |
| :---: | :---: | :---: |
| Negative of $110010_{2}$ |  | $1111001110 . b$ |
| Negative of 728 | ［000［ $\mathrm{Exf} \rightarrow$＂ 0 ＂ <br> ［ Heg 72 达 | 7777777706.0 |
| Negative of $3 A_{16}$ |  | FFFFFFC6．${ }^{\text {h }}$ |

- Using Basic Arithmetic Operations

You can add, subtract; multiply and divide using values of different number systems. Remember, that decimals are cut off in the Base- $n$ mode.

| Example | Operation | Display |
| :---: | :---: | :---: |
| $10111_{2}+11010_{2}=110001_{2}$ |  | $110001 . \mathrm{b}$ |
| $\mathrm{B4} 7_{16}-\mathrm{DF}_{16}=\mathrm{A} 68_{15}$ |  | A68. h |
| $\begin{aligned} 123_{8} \times \text { ABC }_{16} & =37 \text { AF }_{16} \\ & =228084_{10} \end{aligned}$ |  <br> (Hoor [x] | $\begin{array}{r} 37 A F 4 . h \\ 228084 . \mathrm{d} \end{array}$ |
| $\begin{aligned} 1 \mathrm{~F} 2 \mathrm{D}_{16}-100{ }_{10} & =7881_{10} \\ & =1 E C 9_{16} \end{aligned}$ | SHIIF [b] F2D -100 [xx <br> [Bex] [旡 | 7881 .d 1EC9.h |
| $\begin{aligned} 7654_{8} \div 12_{10} & =334.3333333_{10} \\ & =516_{\mathrm{B}} \end{aligned}$ |  <br> (54nt $07654 \nearrow 12$ Ex <br> Dat [ax | $\begin{aligned} & 334 . \mathrm{d} \\ & 516.0 \end{aligned}$ |
| $\begin{aligned} 1234_{10}+1 E F_{16} \div 24_{8} & =2352_{8} \\ & =1258_{10} \end{aligned}$ | (3HIT) 1234 + (shin) 1 IEF <br> - 24 ㅈx] <br>  | $\begin{aligned} & 2352.0 \\ & 1258 . \mathrm{d} \end{aligned}$ |

■ Using Logical Operations
Logical operations are performed using the 四相 key for logical product，the ar key for logical sum，the wey for negation；and the wey for exclusive logical sum．

| Example | Operation | Display |
| :---: | :---: | :---: |
| $19_{16} \mathrm{AND} 1 \mathrm{~A}_{16}=18_{16}$ |  | 18． h |
| $1110_{2}$ AND $36_{8}=1110_{2}$ |  |  |
|  |  | 11 10．6 |
| $233_{8} 0 \mathrm{R} 61_{8}=63_{3}$ | ［act（xet）－＂ 0 ＂ <br> 23 （G） 61 ㅌxx | $\text { 63. } 0$ |
| $120_{16} \mathrm{OR}^{1} 101_{2}=12 \mathrm{D}_{16}$ |  <br>  | 12d．h |
| $1010_{2} \mathrm{AND}\left(\mathrm{A}_{15} \mathrm{OR} 7_{16}\right)=1010_{2}$ | 國国 $\rightarrow$＂$b$＂ <br>  <br> 7口选 | 1010．b |
| $5_{16} \mathrm{XOR}_{15}=6_{16}$ | 國国 $\rightarrow$＂$h "$ <br>  | 6． h |
| Negation of $1234_{8}$ | 困四 $\rightarrow$＂${ }^{\circ}$ <br> （100） 1234 美 | 7777776543.0 |
| Negation of 2FFFED ${ }_{16}$ |  <br> （xiol 2FFFED | FFd00012． h |

## 3－6 Performing Statistical Calculations

The statistical functions of your Casio calculator simplify a wide variety of com－ monly used statistical operations．The actual formulas used by the calculator for internal statistical calculations can be found in Appendix C．Statistical calcula－ tions are divided into two types：standard deviation which is performed in the SD mode，and regression calculation which is performed in the LR mode．

## Performing Standard Deviation

Once you input a set of data in the SD mode，you can quickly calculate two types of standard deviation，the mean，the number of data，the sum of the data，and the sum of squares of the data．

It should be noted that some calculation results are automaticatly stored in cer－ tain constant memories as noted below．This means that any values previously stored in these memories are lost．

| Memory | Calculation Result |
| :--- | :--- |
| $\mathbb{K} 1$ | Sum of squares |
| $\mathbb{K} 2$ | Sum of data |
| $\mathbb{K} 3$ | Number of data items |

## Inputting data

（1）Press
（2）Press 표int［50］［xal to clear the statistical memories．
（3）Input data items one－by－one by pressing the［iTr key after each input．
If you have a number of data items which are identical，you can input them as a group using one of two different procedures．

## Example 1

Data：10，20，20， 30
Input： 10 国 20 囡 团 30 囡
Each time you press［iT without inputting a new data item，the previously input data item（here，20）is input again．

## Example 2

Data： $10,20,20,20,20,20,20,30$
Input： 10 国 20 패요 6 国 30 国
The value which you input after the semicolon（here，6）tells the calculator how many times to repeat the previously input data item（here，20）．

## Deleting an input data item

The method you used to delete in data depends upon when and how the data were input．

## Example 1


To clear 50，press the［i］key．

## Example 2


To clear 20，press 20 이．

## Example 3

30 国 50 团 120 페NiI
To clear 120 sㅐN
To

## Example 4


To clear 120 배표 31 ，press ac．

## Example 5


To clear 120 표itf 31 囡，press 띠．

## Example 6




## Performing calculations

Perform the following operations in any sequence to display the results noted.

| Key Operation | Result |
| :---: | :---: |
|  | Standard deviation $\sigma_{n}$ |
| Silitix | Standard deviation $\ddot{\sigma}_{n-1}$ |
|  | Mean |
|  | Sum of squares |
|  | Sum |
|  | Number of data |

$$
\begin{aligned}
& x=0 \\
& x+3 \\
& \text { ( } \bar{x}]=1 \\
& \text { 困 }=\text { Prog }
\end{aligned}
$$



## －Performing Regression Calculations

Once you input a set of data in the LR mode，you can perform linear，logarithmic， exponential and power regression．
It should be noted that some calculation results are automatically stored in cer－ tain constant memories as noted below．This means that any values previously stored in these memories are lost．

| Memory | Calculation Result |
| :--- | :--- |
| $\mathbb{K} 1$ | Sum of squares of $x$－data |
| $\mathbb{K} 2$ | Sum of $x$－data |
| $\mathbb{K} 3$ | Number of data items |
| $\mathbb{K} 4$ | Sum of squares of $y$－data |
| $\mathbb{I} \mathbb{K} 5$ | Sum of $y$－data |
| $\mathbb{K} 6$ | Sum of $x$ and $y$－data |

## －Linear Regression

Inputting data ..... 1
（1）Press $\operatorname{mon} \boldsymbol{Z}$ for the LR mode． ..... 30
（2）Press 5 shnt［［ac｜［xxe to clear the statistical memories．40
（3）Input data pairs using the following operation： ＜$x$－data） $\sin [\square$－$\langle y$－data〉［0T］
If you have a number of data pairs which are identical，you can input them as ..... 20
a group using one of two different procedures． ..... 30
Example 1 ..... To

Data： $10 / 20,20 / 30,20 / 30,40 / 50$
Input： 10 오표 ..... 10
20 패표 30 四 ..... 20
［咞 ..... 30
40 재낭 50 四 ..... 40

Each time you press［DT without inputting a new data pair，the previously input data pair（here，20／30）is input again．

## Example 2

Data：10／20，20／30，20／30，20／30，20／30，20／30，40／50
Input： 10 四酮回20四


The value which you input after the semicolon（here，5）tells the calculator how many times to repeat the previously input data pair（here，20／30）．

## Deleting an input data pair

The method you used to delete in data depends upon when and how the data were input．

## Example 1


20 패TiT 20 国
30 툐표 30 国
40 Entri 50
To clear 40 strm 50 ，press the Ac key．

## Example 2

10 ［sinio 40 四
20 탭 20 （07T
30 패Nㅏㅇ 30 国



## Example 3

10 ㅍNif 40 四
20 퍂T 20 四
30 雨雨 30 四
40 새나T 50 ©T
To clear 20 패N 20 四，press 20 패NN 20 띠．

## Performing calculations

Perform the following operations in any sequence to display the results noted．

| Key Operation | Result |
| :---: | :---: |
|  | Constant term A |
|  | Regression coefficient B |
| （5antr | Correlation coefficient $r$ |
|  | Estimated value of $x$ |
| 젭（ （ | Estimated value of $y$ |

（ $A=7$
［ $\mathrm{B}=[8$
回 $=$［9］
图 $=\boldsymbol{x}$
图 $=\square$

| Example |  | Operation | Display |
| :---: | :---: | :---: | :---: |
| Temperature and length of steel bar |  | 䏎 $\rightarrow$＂LR＂ <br> ［sulti［scol［xe（Memory clear） |  |
| Temp． | Length |  |  |
| $10^{\circ} \mathrm{C}$ | 1003 mm |  |  |
| $15^{\circ} \mathrm{C}$ | 1005 mm |  |  |
| $20^{\circ} \mathrm{C}$ | 1010mm |  | $\therefore$ |
| $25^{\circ} \mathrm{C}$ | 1011 mm |  | ， |
| $30^{\circ} \mathrm{C}$ | 1014mm |  |  |
| Covariance： $\frac{\Sigma x y-n \cdot \bar{x} \cdot \bar{y}}{n-1}$$\qquad$ |  |  |  |
|  |  | （Regression coefficient B） |  |
|  |  | （Correlation coefficient $r$ ） | 0． 9826 |
|  |  |  （Temperature at 1000 mm ） |  |
|  |  |  | 4． 6428 |
|  |  | （Critical coefficient）（snin］ | 0． 9655 |
|  |  |  |  |
|  |  |  |  |

## －Logarithmic Regression

The regression formula used for logarithmic regression is $y=A+B \cdot \ln x$ ．

## Inputting data

（1）Press $\boldsymbol{\square}$ for the LR mode．
（2）Press［smifi）［sci］［xex to clear the statistical memories．
（3）Input data pairs using the following operation：

If you have a number of data pairs which are identical，you can input them as a group using the two procedures described for linear regression．Don＇t forget to press the tin key before inputting $x$－data．

## Deleting an input data pair

You can delete input data pairs using the same procedures described for linear regression．Again，don＇t forget to press the 四 key before inputting $x$－data．

## Performing calculations

Perform the following operations in any sequence to display the results noted．

| Key Operation | Result |
| :---: | :---: |
|  | Constant term A |
|  | Regression coefficient B |
|  | Correlation coefficient $r$ |
|  | Estimated value of $x$ |
|  | Estimated value of $y$ |

（ $A=$［7］
B $=8$
$\square=9$
匂 $=\boldsymbol{x}$
团 $=\square$

It should also be noted that other calculation results are different from those produced by linear regression as follows．

| Linear Regression | Logarithmic Regression |
| :--- | :--- |
| Sum of $x$－data | Sum of logs of $x$－data |
| Sum of squares of $x$－data | Sum of squares of logs of $x$－data |
| Sum of $x$ and $y$－data | Sum of $y$ and logs of $x$－data |



## －Exponential Regression

The regression formula used for exponential regression is $y=\mathrm{A} \cdot e^{y \cdot x}(\ln y=$ $\ln A+B x$ ）．

## Inputting data

（1）Press［000 $\boldsymbol{\square}$ for the LR mode．
（2）Press 패표（ Scil［xe to clear the statistical memories．
（3）Input data pairs using the following operation：
$\langle x$－data〉 sshff $\square$ In $\langle y$－data〉［0T
If you have a number of data pairs which are identical，you can input them as a group using the two procedures described for linear regression．Don＇t forget to press the 四 key before inputting $y$－data．

## Deleting an input data pair

You can delete input data pairs using the same procedures described for linear regression．Again，don＇t forget to press the 四 key before inputting $y$－data．

## Performing calculations

Perform the following operations in any sequence to display the results noted．

| Key Operation | Result |
| :---: | :---: |
|  | Constant term A |
| 㸚国葍 | Regression coefficient B |
|  | Correlation coefficient $r$ |
|  | Estimated value of $x$ |
| $x$［［nint | Estimated value of $y$ |

$$
\begin{aligned}
& \text { 雷 }=\text { [7 } \\
& \text { B }=8 \\
& 0=0 \\
& \text { 园 }=\boldsymbol{x} \\
& \text { 图 }=\square
\end{aligned}
$$

It should also be noted that other calculation results are different from those produced by linear regression as follows．

| Linear Regression | Exponential Regression |
| :--- | :--- |
| Sum of $y$－data | Sum of logs of $y$－data |
| Sum of squares of $y$－data | Sum of squares of logs of $y$－data |
| Sum of $x$ and $y$－data | Sum of $x$ and logs of $y$－data |



## -Power Regression

The regression formula used for power regression is $y=A \cdot x^{B}(\ln y=\ln A+B \ln x)$.

## Inputting data

(1) Press $\square$ for the LR mode.

(3) Input data pairs using the following operation:

If you have a number of data pairs which are identical, you can input them as a group using the two procedures described for linear regression. Don't forget to press the lin key before inputting $x$-data and $y$-data.

## Deleting an input data pair

You can delete input data pairs using the same procedures described for linear regression. Again, don't forget to press the 四 key before inputting $x$-data and $y$-data.

## Performing calculations

Perform the following operations in any sequence to display the results noted.

| Key Operation | Result |
| :---: | :---: |
|  | Constant term A |
|  | Regression coefficient B |
|  | Correlation coefficient $r$ |
|  | Estimated value of $x$ |
|  | Estimated value of $y$ |

A $=7$
( $\mathrm{B}=\square$
$\square=\square$
圂 $=\boldsymbol{x}$
욱 $=\square$
It should also be noted that other calculation results are different from those produced by linear regression as follows.

| Linear Regression | Power Regression |
| :--- | :--- |
| Sum of $y$-data | Sum of logs of $y$-data |
| Sum of squares of $y$-data | Sum of squares of logs of $y$-data |
| Sum of $x$ and $y$-data | Sum of logs of $x$ and $y$-data |



## 3-7 Using Scientific Constants in Calculations

You can use any of the 13 scientific constants programmed in the memory of the calculator. Constants are selected by using the following operations.

| Operation | Item | Symbol | Value | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  | Speed of light in vacuum | $c$ | 299792458 | $\mathrm{ms}^{-1}$ |
|  | Planck's constant | $h$ | $6.626176 \times 10^{-34}$ | J.S |
|  | Gravitational constant | G | $6.672 \times 10^{-11}$ | $\mathrm{Nm}^{2} \mathrm{~kg}^{-2}$ |
|  | Elementary charge | $e$ | $1.6021892 \times 10^{-19}$ | C |
| Mammexime | Electron rest mass | $m$ | $9.109534 \times 10^{-31}$ | kg |
|  | Atomic mass unit | $u$ | $1.6605655 \times 10^{-27}$ | kg |
| Wixam [ims | Avogadro constant | $N_{1}$ | $6.022045 \times 10^{23}$ | $\mathrm{mol}^{-1}$ |
|  | Boltzmann constant | $k$ | $1.380662 \times 10^{-23}$ | J. $\mathrm{K}^{-1}$ |
|  | Molar volume of ideal gas at s.t.p. | Vm | 0.02241383 | $\mathrm{m}^{3} \mathrm{~mol}^{-1}$ |
|  | Accelaration of free fall | $g$ | 9.80665 | $\mathrm{ms}^{-2}$ |
|  | Molar gas constant | $R$ | 8.31441 | $\mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$ |
| Waxame [ax | Permitivitit of vacuum | $\epsilon{ }^{\prime}$ | $8.854187818 \times 10^{-12}$ | $\mathrm{Fm}^{-1}$ |
|  | Permeability of vacuum | $\mu$ | $1.256637061 \times 10^{-6}$ | $\mathrm{Hm}^{-1}$ |

$\mathrm{CONST}=\mathrm{In}$
(c) $=1$
(e) $=4$
NNA $=7$
[9] $=\Psi \quad$ № $=[$
(II) $=2$
$m$ me
$[\mathbf{k}=8$
(1R) $\boldsymbol{E}$
(G) $=3$
(뼈 $=6$
$5 m=9$
40 $=x$

| Example | Operation | Display |
| :--- | :--- | :---: |
| Speed of light in vacuum ( $c$ ) <br> Obtaint the energy when a sub- <br> stance having a mass of 2 g is con- <br> sumed and completely converted <br> to energy. | 2 |  |
| Formula: $E=m c^{2}$ |  |  |


| Example | Operation | $\therefore$ Display |
| :--- | :---: | :---: |
| Gravitational constant ( $G$ ) |  |  |
| What is the force of attraction of <br> two people weighing 60 kg and |  |  |

80 kg separated by a distance of 70 cm ?

Formula: $F=G \frac{M m}{r^{2}}$

## Elementary charge (e)

Electron rest mass (me)
Obtain the sustained force and acceleration of electrons between two parallel electrodes 3 cm apart. when a voltage of 200 V is applied.

Formula: $F=e E$
$\because \quad a=\frac{F}{m e}$

Atomic mass unit (u)
The mass of a hydrogen atom is $1.00783 a m u$ and the electron mass is $1 / 1800$ of this. What is the proton mass?

Avogadro constant ( $N_{4}$ )
Obtain the mass of one molecule of water.

## Boitzmann constant (k)

Obtain the average translational motion energy of one molecule of ideal gas at $0^{\circ} \mathrm{C}$.
Formula: $e=\frac{3}{2} k T$
Molar volume of ideal gas at s.t.p. (Vm)

How many molecules exist per cc in a vacuum at $0^{\circ} \mathrm{C}$ at a pressure of $10^{-7} \mathrm{mHg}$ ?

## Accelaration of free fall ( $g$ )

A pebble was dropped and took 1.5 seconds to hit the surface of a pond. Find the distance of fall.
Formula:. $S=\frac{1}{2} g t^{2}$
6. $535836735^{-07}$

1. $068126133^{-15}$
2. 17253652415
3. $672637968^{-27}$
4. $98901785^{-23}$
5. 6538 f1089-21

3535202784
11. 03248125

| Example | Operation | Display |
| :---: | :---: | :---: |
| Molar gas constant ( $R$ ) |  |  |
| An inflated rubber balloon is 2.5 |  |  |
| atm. in pressure, 2.8 liters in | $2.5 \times 1.013$ ExP $5 \times 2.8$ Exf |  |
| volume, and $37^{\circ} \mathrm{C}$ in inside tern- |  |  |
| of gas molecules in the balloon? | $\bigcirc$ | 1. 65675523.423 |

## Permittivity of vacuum ( $\epsilon 0$ )

Here is a condenser formed by two $700 \mathrm{~cm}^{2}$ copper plates held parallel and 2 mm apart. When it is placed in oil whose specific inductive capacity is 5 , what is the capacitance of the condenser?

## Permeability of vacuum ( $\mu o$ )

In a vacuum, two long conductors are stretched parallel and 0.4 m apart. When 2A and 3A of currents flow in opposite directions in the two conductors, what is the force ( N ) exerting on $2-\mathrm{m}$ sections of the conductors?

1. $65675523.44^{23}$
$5 \times$ Nam [ixs

2. $549482868^{-09}$
3. $-\infty$

Chapter 4
Built-in Formula Calculations

## 4-1 Using Built-in Formula Calculations

Your Casio calculator is programmed with 128 built-in formulas that you can easily recall by entering the correct formula numbers.

## ■ Recalling Built-in Formulas

You can recall built-in formulas either by entering the correct formula number or by sequentially searching through the built-in formulas until you find the one you need.

## -Recalling a Built-in Formula Using Its Formula Number

You can recall any specific built-in formula by inputting its formula number.
(1) Input the number of the built-in formula you wish to recall.
(2) Press the max key.

## Example

Recall Heron's formula, which is built-in formula number 5.
5 (

$$
\begin{aligned}
& 5=\sqrt{(5(5-a)(5-b} \\
& a^{?}
\end{aligned}
$$

## - Sequentially Searching Through Built-in Formulas

You can also search sequentially through the built-in formulas available by pressing the rumt key without inputting a number.

## Example

Recall built-in formula number 1 and then search through the next sequential formulas.

1 패녕
(Formula number 1)
[mL
(Formula number 2)

FIPM
(Formula number 3)



## ■ Canceling a Built－in Formula Recall

After you have recalled a built－in formula，you can cancel it at any time by press－ ing Hinion 1 ．This switches to manual calculations，and the computer stands by wait－ ing for further input．

## －Inputting Values for Built－in Formula Variables

Once a built－in formula is recalled，the next step is to input values for variables． The variables appear on the display with a question mark to request that you in－ put a numeric value．

## Example

Quadratic equation solution
（1）Specify built－in formula number $\uparrow$ for quapdratic equation solution．

1 팬 $\quad a x^{2}+b x+c=0$
a?
0.
（2）Enter a value for a．
（3）Enter a value for $b$ ．
5

$$
\begin{gathered}
a x^{2}+b x+c=0 \\
b ?
\end{gathered}
$$


［细

$$
a x^{2}+b x+c=0
$$

$$
C^{?}
$$

0. 

（4）Enter a value for $c$ ．
The variable $d$ is a dummy prompt．


国域

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& d=
\end{aligned}
$$

Dummy prompts appear for built－in formula numbers 1 through 3 and should be ignored．Simply press the 国訧 key when they appear．

## －Obtaining the Result of a Built－in Formula

After you enter values for all of the variables which appear on the display，you can execute the formula by pressing the 远e key．

## Example

Continuing from the previous example．
（1）Press the 国思 key．
［琵
$a x^{2}+b x+c=0$
．$\chi=$ $-1$.

Notice that the symbol appears，along with an arrow on the left side of the display．This indicates that there are other values in the solution set．
（2）Press the 涃 key．
医苳
$a x^{2}+b x+c=0$
$\chi=$ $-{ }^{\circ} .5$

Press ㅌxx as many times as required to view all of the values which satisfy the formula．

## －Displaying the Built－in Formula When Inputting Values

Notice that when you input a value for a variable，the prompt remains on the bot－ tom of the display，and the formula on the top of the display is replaced by the value that you input：You make the formula return to the top of the display as follows．

## Example

3

 play again shows the input value and the variable prompt．

SSHfil 1000


## -Shifting the Built-in Formula on the Display

Some of the built-in formulas contained in the memory of the calculator are longer than the 14 columns on the display. In this case, you can shift the formula to the left and right on the display to read it.

## Example

(1) Recall built-in formula number 41 .

AC 41 Hin

$$
\begin{aligned}
& \mathrm{a}=\left(\mathrm{v} 2-\mathrm{v}^{2}\right) /(\mathrm{t} 2- \\
& \mathrm{v} \text { ? }
\end{aligned}
$$

(2) Press the 团 key to shift to the right.

너옹


요오

$$
\begin{array}{ll}
2-v 1) /(t 2-t 1) \\
v a ? & 0
\end{array}
$$

Indicators on the display below the formula show you the direction that the currently displayed formula continues.
(3) Press the key to shift to the left.

붑 붕

$$
\begin{array}{ll}
a=\left(v 2-v_{1}\right) /(t \underset{\sim}{2}= \\
v 2 ? & 0 .
\end{array}
$$

## Executing the Same Built-in Formula Again

After you have obtained the result of a formula, you can press the Exe key again to execute the formula again from the beginning. Each variable of the formula is displayed one by one, while still retaining the values that you assigned to it previously. You can either press the key to keep the same value, or input a new value.

## What to Do When an Error Is Generated

The action you should take when an error is generated depends upon whether you are still inputting values or whether you are executing the formula．
When an Ma error or Syn error appears while you are inputting values：
（1）Press either the or $\log _{5}$ key（it doesn＇t matter which）．
＊Use the 回 and 国 keys when you only want to make changes．If you want to clear all of the values which you have input up to that point and start over again，press the $\boldsymbol{A C}$ key and continue．
（2）Make the required corrections．
＊Corrections are made using the delete and insert procedures described in 2－2 Correcting Entries on the Display．

When an error appears while you are executing the formula：
（1）Press the $\boldsymbol{a c}$ key．
You can＇t use the and $⿴ 囗 ⿰ 丿 ㇄$
（2）Press the mman key．
＊This executes the formula again，after clearing all of the values that you input before the error was generated．

Chapter 5
User Formula Calculations

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos \mathrm{~A} \\
& b^{2}=c^{2}+a^{2}-2 \operatorname{cocos} B \quad \cos \varphi=\frac{\pi}{4} \\
& c^{2}=a^{2}+b^{2}-2 a b \cos \mathrm{C} \\
& X=2 \pi / \mathrm{L}-\frac{1}{2 \pi / C}\left(==n \mathrm{~L}-\frac{1}{4 C}=\mathrm{X}_{1} \cdot \mathrm{X}_{\mathrm{C}}\right)
\end{aligned}
$$

## 5－1 $\quad$ About User Formulas

Of course，it is very possible that you might need to use a formula which is not in the memory of the calculator．In this case，you can input a formula and either execute it once or store it in memory until you need it．You can also recall one of the built－in formulas，make any changes in it you want and then use it as a new user formula．

## －Chaining a Series of Calculations in a Formula

As with manual calculations，you can chain multiple formulas into a series that is treated as a single calculation sequence．You can use one of three different symbols to connect each calculation in the chain．Chained calculations are per－ formed one－by－one，in the same left－to－right sequence as they would appear when written down．

In all cases，the 4 indicator appears on the display to let you know that the calcu－ lator is waiting for you to press the 国 key to continue．
＂：＂－This connector tells the calculator to pause until the 龱 key is pressed， and retains the values which have been assigned to variables．

## Example

$\mathrm{C}=\mathrm{A}+\mathrm{B}: \mathrm{D}=\mathrm{A}+\mathrm{B}$
（1）Input of value for A（ex．10）．
（2）Input of value for $B$（ex．20）．
（3）Display of C（30）and stop．
（4）Press 国．
（5）Display of D（30）．
＂ 4 ＂－This connector tells the calculator to pause until the 国e key is pressed， and clears the values which have been assigned to variables．

## Example

$\mathrm{C}=\mathrm{A}+\mathrm{B} \boldsymbol{\mathrm { D }}=\mathrm{A}+\mathrm{B}$
（1）Input of value for A （ex．10）．
（2）Input of value for B （ex．20）．
(3) Display of C (30) and stop.
(4) Press Exe].
(5) Input of value for $\mathrm{A}(\mathrm{ex}, 30)$.
(6) Input of value for $B$ (ex. 40).
(7) Display of D (70).
" $\rfloor$ "-This connector tells the calculator to clear the values which have been assigned to variables, without displaying any intermediate results.

## Example

$C=A+B 」 D=A+B$
(1) Input of value for $\mathrm{A}(\mathrm{ex} .10)$.
(2) Input of value for $B$ (ex. 20).
(3) Input of value for $\mathrm{A}(\mathrm{ex} .30)$.
(4) Input of value for $B$ (ex. 40).
(5) Display of D (70).

Note that each portion of a chained series is actually an individual calculation. This means that you couldn't use a sequence such as the following:
$123 \times 456 \square \boldsymbol{\square}$

## 5-2 Using Manually Entered User Formulas

You can input user formulas for one-time execution without storing them in memory. These are called manually entered user formulas. Such formulas are input in the following format:

Variable $=$ Formula

## Exámple

Manually input the user formula: $M=(A+B) / 2$


56

| 56 | $\ddots$ |  |
| :---: | :---: | :---: |
| $\mathrm{~A}^{2}$ | $\cdots$ | $0^{5}$ |

ㄸㅣㅏ

$$
\begin{array}{cc}
M=(A+B) / 2 \\
B ? & \\
B & 0 \\
\hline
\end{array}
$$

65


뜨장
$M=(A+B) / 2$
$\mathrm{M}=$ 60.5

## 5-3 Understanding User Formula Memories

Your Casio calculator comes equipped with a total of 12 independent memories for storage of user formulas. When the calculator is in the WRT mode (activated by सane (2), the display should look something like this:

## P O1 123456789 คm <br> $5=$ <br> 675

The top line shows the formula memories which are empty and ready for storage． We refer to these memories using such names as memory P1，memory P2，memory PA，etc．Each time you store a formula in one of the memories，the name of the memory you use is replaced on this display with a dash．

The number on the bottom line of the display shows the number of formula steps remaining in the entire user formula memory．＇This is a very important point．
＊You can store as much as you like in any one user formula memory，as long as the total number of formula steps stored in all of the user formula memories is not greater than 675.

The display used here shows that the user formula memories are all empty．Each time you store a formula in one of the memories the number on this display be－ comes smaller．As you input formulas，the input position is always indicated by a blinking cursor．When there are six or fewer formula steps remaining in memory， the cursor changes to ，and input becomes impossible when all of the steps are used up．Should this happen，delete no longer necessary formulas from memory to make more room：

For important details on counting formula steps，see Appendix C．

## 5－4 Using User Formula Memories

## －Storing an Original Formula

Unike the manual mode，when you store a formula in a user formula memory it remains there until you delete it．The contents of the user memories are retained even when you press the key or switch the power of the calculator OFF．
（1）Press［100E（2）to switch to the WRT mode，
（2）Use the and $⿴ 囗 十$ keys to select a formula memory name．
＊The currently selected formula memory is indicated by its name flashing on the display．The 国and国 keys move the selection over to the left and right．Of course， you can skip this step if the currently blinking formula memory name is the one you wish to use．
（3）Specify a calculation mode for the selected formula memory．

The following lists the key operation and restrictions for each calculation mode．

## Comp trox $\boldsymbol{+}$


－Scientific function calculations cannot be performed．
－Unit of angular measurement cannot be specified．
－Built－in formulas cannot be recalled．
SD
－Abs and $\sqrt[3]{ }$ cannot be used．
－ 四 cannot be entered consectively．
LR №m $\boldsymbol{Z}$
－Abs and $\sqrt[3]{ }$ cannot be used．
－国 cannot be entered consectively．
（4）Press the 㸚 key．
＊The display should appear as shown here．The 0 at the lower right shows how many steps there are between the present position of the cursor and the begin－ ning of the formula．Since we have not input anything yet，this number indicates zero steps in memory．

（5）Input the formula using the same procedures as those explained in Chapter 3 Manual Calculations．
＊Note that each time you input something，the number indicating the number of steps becomes bigger．If you use the ⿴囗玉 $⿴ 囗+$ key to move the blinking cursor on the display，the number will change to indicate how many steps there are between the present position and the beginning of the formula：
（6）Press mo0e 1 to store the program．

## IMPORTANT

Note the following when writing formulas．
－You cannot include sexagesimal $\leftrightarrows$ decimal conversions in a formula： －You cannot perform decimal place shift using the Eve key in a formula．

## －Modifying a Built－in Formula and Storing It as a User Formula

You can recall any of the 128 built－in formulas programmed in the memory of the calculator，modify it，and then store it in one of the user formula memories．
（1）Enter the built－in formula name and press the （nman key．
Note that you select the built－in formula before you enter the WRT mode．
（2）Press
（3）Use the 旬 and keys to select a formula memory name．
The currently selected formula memory is indicated by its name flashing on the display．The $⿴ 囗 ⿰ 丿 ㇄$ and 园 keys move the selection over to the left and right．
（4）Press the 国 key．
（5）Press the［HEA key to insert the built－in formula selected in step（1）above．
＊／f．you wish to use more than one built－in formula，you would have to first go back to the RUN mode using ⿴囗⿰丿⿺⿻⿻一㇂㇒丶𠃌⿴⿱冂一⿰丨丨丁心国 to recall the built－in formula．Then you would repeat steps（1）through（5）above to insert the next built－in formula into usetr formula memory．Repeat this procedure for each built－in formula you wish to insert．
（6）Modify the recalled formula as desired．


## Example

Recall centrifugal force（1）to P0 and modify it．
54 댄N

| P 0123456789 AB |  |
| :---: | :---: |
| $\mathrm{S}=$ | 675 |

E
$3 \Theta$ 四国
（ mL

$+10$

| $\begin{gathered} 3 \rightarrow \mathrm{~m}: \underset{\mathrm{war}}{F=m r w^{2}+10}+13 \\ 5=1 \end{gathered}$ |
| :---: |
|  |  |

## Executing a Formula Stored in a User Formula Memory

Once a formula is stored，it can be executed at any time by specifying the user formula memory name．
（1）Press 班远 1 to enter the RUN mode．
（2）Press frof followed by the formula memory name．
（3）Press the 㸚 key to execute the selected formula．
Once you execute a formula，subsequent operation depends on the type formu－ la that you recalled．For example，prompts may appear to tell you to input values for variables，etc．

## Example

Execute the user formula which you stored in the previous example．

## Deleting User Formulas

After you store formulas to the user memories，you can delete them either individu－ ally or all at once．

## －Deleting a Specific User Formula

（1）Press
＊You can delete user formulas in the PCL mode only．

＊Memories which contain formulas are indicated by their memory names being replaced by a dash．
（3）Press the $\triangle C$ key to delete the selected user formula．
＊After you press the $\mathbf{A c}$ key，the memory number where you deleted the formula will appear on the display again in place of the dash．
（4）Press wa0e［1］to return to the RUN mode．

## Example

Delete the formula in P3.
1000 3

$$
\begin{aligned}
& \mathrm{P} 01-\mathrm{p}_{\text {cL }}^{4}-6789 \mathrm{AB} \\
& 5= \\
& \hline
\end{aligned}
$$

ㅂㅇㅇㅂㅇㅗ

$$
\begin{array}{|cc|}
\hline \mathrm{P} 01 \_ \text {- } 4 \_6789 \mathrm{~PB} \\
\mathrm{~F}= & 523 \\
\hline
\end{array}
$$

AC
P 01-34_6789AB $5=$ 589

## -Deleting All User Formulas

(1) Press (y001 3 to enter the PCL mode.
(2) Press 대Nㅏ

This deletes all user formulas, and causes all of the user formula memory names to appear on the display.

## Example

Delete all formulas.
HOEE 3
[sinfl ma

| P O1__4_6789ค日 |  |
| :---: | :---: |
| $5=$ | 523 |


| P 0123456789 AB |  |
| ---: | ---: |
| $\mathrm{S}=$ | 675 |

Chapter 6

## Formula Library



This chapter lists all of the built-in formulas which are programmed in your calculator. A short explanation of the formula is followed by a brief operational example.

# 1. 

 Quadratic Equation Solution$$
a x^{2}+b x+c=0 \quad\left(a \neq 0 \quad b^{2}-4 a c \geqq 0\right)
$$

-The quadratic equation can be solved when constants $a, b$ and $c$ are known.

## Example

Solve: $2 x^{2}+x-10=0$

Operation
Display

## $\triangle \mathrm{AC} 1$ [MLA

(Recall quadratic equation solution.)

2 EXE
(Enter value for $a$.)

1 ExE
(Enter value for $b$.)
(t) 10 EXE
(Enter value for c.)

EXE
( $d$ is a dummy.)

Exx

| $a \chi$ 2 $+b x+c=\square$ |  |
| :---: | :---: |
| $a ?$ | 0. |

> | $a x^{2}+b x+c=0$ |  |
| :--- | :--- |
| $b ?$ | 0. |

$a \chi 2+b \chi+\square=\square$
ᄃ?
$\stackrel{\mathrm{x}}{0}$.
$a x 2+b x+c=\square$
5ry

- $d=$

0. 

$$
\begin{array}{ll}
a x 2+b x+e=\square \\
x= & 2 . \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \hline a x 2+b x+c=\square \\
& x=-2.5
\end{aligned}
$$

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y=c_{1} \\
a_{2} x+b_{2} y=c_{2}
\end{array} \quad\left(\begin{array}{lll}
a_{1} b_{1} c_{1} \\
a_{2} b_{2} & c_{2} \\
a_{1} b_{2}-b_{1} a_{2} \neq 0
\end{array} \quad \ldots \text { are constants }\right)\right.
$$

-The simultaneous linear equation with two unknowns can be solved when $a_{1}$, $b_{1}, c_{1}, a_{2}, b_{2}$ and $c_{2}$ are known.

## Example

Solve: $3 x+2 y=17$
$5 x+4 y=26$
AC2 (RMLA)
(Recall simultaneous linear equation with two
unknowns.)
3 EXE
(Enter value for $a_{1}$.)
2 EXE]
(Enter value for $b_{1}$.)
17 EXE .
(Enter value for $c_{1}$.)
5 EXE
(Enter value for $a_{2}$.)
4 EXE]
(Enter value for $b_{2}$.)



| $a 1 x+b 1 y=\llcorner 1$ | az $x$ |
| :--- | :--- |
| $b z ?$ | 0. |


| $a 1 x+b 1 y=[1$ | $a 己 x$ |
| :--- | :---: |
| $c 2 ?$ | 0. |

26 Ex
(Enter value for $c_{2}$.)

EXC
( $d$ is a dummy.)

EXC



- $\chi=$ 8.
$\exists 1 x+b 1 y=C 1 \quad$ a $2 x$
$y=$

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y+c_{1} z=d_{1} \\
a_{2} x+b_{2} y+c_{2} z=d_{2} \\
a_{3} x+b_{3} y+c_{3} z=d_{3}
\end{array} \quad\binom{a_{1} b_{2} c_{3}+b_{1} c_{2} a_{3}+c_{1} b_{3} a_{2}-c_{1} b_{2} a_{3}}{-b_{1} a_{2} c_{3}-a_{1} b_{3} c_{2} \neq 0}\right.
$$

-The simultaneous linear equation with three unknowns can be solved when $a_{1}$, $b_{1}, c_{1}, d_{1}, a_{2}, b_{2}, c_{2}, d_{2}, a_{3}, b_{3}, c_{3}$ and $d_{3}$ are known.

## Example

Solve:

$$
\left\{\begin{array}{l}
4 x+y-2 z=-1 \\
x+6 y+3 z=1 \\
-5 x+4 y+z=-7
\end{array}\right.
$$

## Operation

## Display

## AC3 FMLA

(Recall simultaneous linear equation with three unknowns.)
4 Ex]
(Enter value for $a_{1}$.)
1 ExE
(Enter value for $b_{1}$.)
(-9) 2 Ex
(Enter value for $c_{1}$.)

| $a 1 \chi+b 1 Y+ᄃ 1 Z=d_{1}$ |  |
| :--- | :--- |
| $d 1 ?$ | 0. |

( -1 EXE
(Enter value for $d_{1}$.)

| $a 1 \chi+b 1 Y+C 1 Z=d 1$ |  |
| :--- | :--- |
| $a 己 ?$ | 0. |

1 EXE
(Enter value for $a_{2}$.)

| $\exists 1 \chi+b 1 Y+C 1 Z=d_{1}$ |  |
| :--- | :---: |
| $b 2 ?$ | 0. |


| $\begin{aligned} & 6 \text { ExE } \\ & \text { (Enter value for } b_{2} \text {.) } \end{aligned}$ | a $1 x+b 1 y+c 1 Z=d 1$ $c z ?$ |
| :---: | :---: |
| $\begin{aligned} & 3 \text { EXE } \\ & \text { (Enter value for } c_{2} \text {.) } \end{aligned}$ | $a 1 x+b 1 y+C 1 Z=d^{1}$ $d 2 ?$ |
| $\begin{aligned} & 1 \text { EXE } \\ & \text { Enter value for } d_{2} \text {.) } \end{aligned}$ | $\begin{aligned} & \text { a } 1 x+b 1 y+ᄃ 1 z=d 1 \\ & \text { aョ? } \end{aligned}$ |
| ( (1)) 5 EXE <br> (Enter value for $a_{3}$.) | $\begin{aligned} & a 1 x+b 1 Y+c 1 Z=d 1 \\ & b 3 ? \end{aligned}$ |
| $\begin{aligned} & 4 \text { Exx } \\ & \text { (Enter value for } b_{3} \text {.) } \end{aligned}$ | $\exists 1 x+b 1 y+C 1 Z=d i$ <br> ᄃ3? <br> 0. |
| $\begin{aligned} & 1 \text { [ EXE] } \\ & \text { (Enter value for } c_{3} \text {.) } \end{aligned}$ | $\begin{aligned} & a 1 x+b+y+c 1 z=d 1 \\ & d z ? \end{aligned}$ |
| (-9) 7 EXE <br> (Enter value for $d_{3}$.) | $\left[\begin{array}{l}a 1 x+b 1 y+c 1 z=d^{1} \\ d= \\ 0\end{array}\right.$ |
| EXE <br> ( $d$ is a dummy.) | $\begin{aligned} & \partial 1 \chi+b 1 y+c 1 z=d i \\ & x= \end{aligned}$ |
| EXE |  |
| EXE] | $\begin{aligned} & a 1 \chi+b 1 y+C 1 Z=d_{0}^{1} \\ & Z= \end{aligned}$ |

# 4. Cosine Theorem <br> $a^{2}=b^{2}+c^{2}-2 b c \cos \theta \rightarrow a=\sqrt{b^{2}+c^{2}-2 b c \cos \theta}$ <br> ( $b, c>0,0^{\circ}<\theta<180^{\circ}$ ) 

$a, b$ and $c$ are sides of a triangle. $\theta$ is adjoining angle.
-The cosine theorem is used when the lengths of two sides of a triangle and their adjoining angle are known to determine the length of the remaining side.

## Example

Two sides of a triangle are $b=15 \mathrm{~cm}$ and $c=9.5 \mathrm{~cm}$. The angle formed by these two sides is $\theta=62.3$ degrees. Determine the length of the remaining side $a$.

## Operation

Display
(10006) (Degree)
$\triangle \mathrm{AC} 4$ [M LA
(Recall cosine theorem.)
15 ExC
(Enter value for b.)
9.5 ExC
(Enter value for c.)
62.3 ExC
(Enter value for $\theta$ :)

$$
\begin{array}{cc}
a=\sqrt{ } c b 2+c b^{2}-2 b c c \\
b^{?} & 0
\end{array}
$$

$$
\begin{array}{cc}
a=\sqrt{ }\left(b^{2}+c c^{2}-2 b c_{0}\right. \\
c^{?} & 0 .
\end{array}
$$

$$
\begin{gathered}
a=\sqrt{ }\left(b^{2}+c c^{2}-2 b c c\right. \\
A ?
\end{gathered}
$$

$$
\begin{gathered}
a=\sqrt{ }(b 2+c 2-2 b c c \\
a=13.51924617
\end{gathered}
$$

## 5. Heron's Formula

$\mathrm{S}=\sqrt{s(s-a)(s-b)(s-c)}, s=\frac{a+b+c}{2}$
$a, b$ and $c$ are sides of a triangle. $\quad\left(\begin{array}{l}a+b>c>0 \\ b+c>a>0 \\ c+a>b>0\end{array}\right)$

- Heron's formula is used to calculate the area of a triangle for which the lengths of its three sides are known.


## Example

Determine the area of a triangle with the three sides $a=12 \mathrm{~cm}, b=8 \mathrm{~cm}, c=17 \mathrm{~cm}$.

## AC5 EMLA

(Recall Heron's formula.)

12 ExE
(Enter value for $a$.)

8 [ ExE
(Enter value for $b$.)

17 医區
(Enter value for $\cdot c$.)

EXE]

$$
\begin{gathered}
5=\sqrt{(5(5-a)(5-b} \\
a ?
\end{gathered}
$$

$$
\begin{array}{cc}
5=\sqrt{ }(5(5-a) & (5-b \\
b ?
\end{array}
$$

$$
\begin{array}{cc}
5 & =\sqrt{ }(5(s-a)(5-b \\
c ?
\end{array}
$$

$$
\begin{array}{|cc}
5=\sqrt{ }(5(5-a)(5-b \\
5= & 18.5
\end{array}
$$

$$
\begin{gathered}
S=\sqrt{ }(5(5-a)(5-b \\
S=43.51939223
\end{gathered}
$$

## 6. Area of a Triangle

$$
\mathrm{S}=\frac{1}{2} b c \sin \mathrm{~A} \quad\left(0^{\circ}<\mathrm{A}<180^{\circ}\right)
$$

$b$ and $c$ are sides of a triangle. A is adjoining angle.
-This equation is used to calculate the area of a triangle when the lengths of two sides and their adjoining angle are known.

## Example

Determine the area of a triangle when two sides measure $b=15 \mathrm{~cm}$ and $c=9.5 \mathrm{~cm}$, with the adjoining angle to the two sides being $A=62.3$ degrees.

## Operation

Display
Ma0E] 4] [x] (Degree)
AC] 6 FMA
(Recall area of a triangle.)

15 ExE
(Enter value for $b$.)
9.5 EXE
(Enter value for $c$.)
62.3 因琏
(Enter value for A.)

S=b̌sin $A \% 2$


S=bcsin A/2
C?
0.

S=ظcsin $\mathrm{A} / 2$
A?
0

## S=bcsin A/2 $S=63.08429584$

7．Sine Theorem（1）

$$
\frac{a}{\sin \mathrm{~A}}=2 R \quad\binom{0^{\circ}<A<180^{\circ}}{a>0, R>0}
$$

$a$ is one side of a triangle， A is its opposite angle， R is a radius of circumscribed circle
－This calculator is programmed with the following three formulas．
（1）$a=2 \mathrm{R} \cdot \sin \mathrm{A} \quad$ This formula uses the sine theorem to calculate the length of the side opposite a known angle．
（2） $\mathrm{R}=a / \sin \mathrm{A} \quad$ This formula calculates the radius of a circle that circumscribes a triangle for which the length of one side and the angle opposite the side are known．
（3） $\mathrm{A}=\sin ^{-1}(\mathrm{a} / 2 \mathrm{R}) \quad$ This formula calculates the angle of a triangle for which the length of the side opposite the angle and the radius of a circle that circumscribes the triangle are known．With this formula，the calculated range of A is： $0^{\circ}<\mathrm{A} \leqq 90^{\circ}$ ．
The formulas are stored in the sequence noted above．If you press 国 while the result of formula
（3）or（2）is displayed（while the Diss indicator is on the display），the next sequential formula is executed．Pressing 国国 while the result of formula（3）is displayed executes formula（1）．

## Example

Triangle ABC is inscribed within a circle with a radius of $\mathrm{R}=4.5 \mathrm{~mm}$ ． Angle A is $40^{\circ}$ ．Calculate the length of the side opposite A．Also calculate what the length of radius R would become if side $a$ of triangle ABC were 5 cm and its opposite angle A is $60^{\circ}$ ．

Operation


Display

MODE 4］EXE（Degree）
AC 7 FMLA
（Recall sine theorem formula（1）．）
4.5 EXE
（Enter value for R．）

## 40 ExE

（Enter value for A．）

## ExE

（Execute next formula．）
5 EXE
（Enter value for $a$ ．）

## 60 ExE

（Enter value for A．）
－To restart execution from formula（1），press AC fol－ lowed by Notind ．Note，however，that this operation also clears any values you input previously．

| $\begin{gathered} a / \sin A=2 R \\ R ? \end{gathered}$ | 0. |
| :---: | :---: |
| $\begin{gathered} \text { a/sin } R=2 R \\ A \text { ? } \end{gathered}$ | ${ }_{0}^{1}$ |
| $\begin{aligned} & a / \sin A=2 R \\ & a=5.7850884 \end{aligned}$ |  |



## 8. Sine Theorem (2) <br> $$
\frac{a}{\sin \mathrm{~A}}=\frac{b}{\sin \mathrm{~B}}=\frac{c}{\sin \mathrm{C}}=2 \mathrm{R} \quad\binom{0^{\circ}<\mathrm{A}, \mathrm{~B}, \mathrm{C}<180^{\circ}}{a, b, c, \mathrm{R}>0}
$$

- This sine theorem is used when the length of one side, its opposite angle, and another angle are known for a triangle to determine the lengths of the other two sides, the other two angles, and the radius of the circumscribed circle.


## Example

The length of one side is $b=7 \mathrm{~cm}$, its opposite angle is $\mathrm{B}=60$ degrees, and another angle is $\mathrm{A}=40$ degrees. Determine the length of side $a$.

## Operation

Display

| M00E 4 ExE (Degree) | a/sin $A=b / s i n$ |
| :---: | :---: |
| AC 8 FMLA $\square$ <br> Recall sine theorem (2)) | b? |
| $\begin{aligned} & 7 \text { [EXE] } \\ & \text { (Enter value for } b \text {.) } \end{aligned}$ | a/sin $A=b / 5 i n$ <br> A? $0$ |
| $\begin{aligned} & 40 \text { EXE } \\ & \text { (Enter value for } \mathrm{A}:) \end{aligned}$ | $\begin{array}{cc} a / 5 i n & \mathrm{~A}=\mathrm{b} / 5 \mathrm{in} \\ \mathrm{~B} ? & 0 \end{array}$ |
| 60 ExE <br> (Enter value for B .) | $\begin{array}{r} a / 5 i n A=b / \sin \\ a=5.195590393 \\ \hline \end{array}$ |

# 9. Rectangular $\rightarrow$ Polar Coordinate Conversion 

$$
r=\sqrt{x^{2}+y^{2}}, \quad \theta=\tan ^{-1} \frac{y}{x} \quad\left(x>0,-90^{\circ} \leqq \theta \leqq 90^{\circ}\right)
$$

- Rectangular to polar coordinate conversion is used when the location of the rectangular coordinates is known.


## Important

Be sure to perform one of the following correction procedures on the calculated value of $\theta$ when $x<0$ :

- If $y \geqq 0$ (Quadrant II), $\theta+180^{\circ}$
- If $y<0$ (Quadrant III), $\theta-180^{\circ}$

Also note that $x=0$ is undefined, and so such a result produces an error (Ma ERROR).


Example Convert the rectangular coordinates for point $\mathrm{A}(x=6.2, y=2.0)$ to polar coordinates $r$ and $\theta$.

Operation
Display
400] 4 [x] (Degree)
AC9 (FM M
(Recall rectangular to polar coordinate conversion.)
6.2 ExE
(Enter value for $x$.)

2 EXE
(Enter value for $y$.)

ExE


$$
\begin{aligned}
& r=\sqrt{ }(x 2+y 2) \\
& r=6.51459899 \\
& \theta=\mathbf{t a n}-1(y / x) \\
& \theta=17.8786966
\end{aligned}
$$

The following formula can also be used to calculate the value of $\theta$ in cases where it is irrelevant whether $x$ is positive or negative.

$$
\theta=\frac{y}{\text { Abs } y} \times \cos ^{-1} \frac{x}{\sqrt{x^{2}+y^{2}}} \quad\left(y \neq 0 ;-180^{\circ}<\theta<180^{\circ} \text { and } \theta \neq 0\right)
$$

# 10. Polar $\rightarrow$ Rectangular Coordinate Conversion 

$$
x=r \cos \theta \quad y=r \sin \theta \quad(0 \leqq r)
$$

-Polar to rectangular coordinate conversion is used when the location of the polar coordinates is known.

## Exampie

Convert the distance from the origin ( $r=6.5$ ) and the angle from the $x$-axis $(\theta=18$ degrees) to rectangular coordinates for point A .

## Operation

Display
MODE 4 EXE (Degree)
AC 10 EMLA
(Recall polar to rectangular coordinate conversion.)
6.5 EXE
(Enter value for $r$.)

18 ExE
(Enter value for ${ }^{\prime} \theta$.)

ExE
$x=\operatorname{rcos} \theta$
$r$ ?
0

$$
\begin{array}{cc}
x=r \cos \theta & \\
\theta ? & \\
\hline
\end{array}
$$

$$
\begin{aligned}
x & =r \cos \theta \\
x & =6.181867356
\end{aligned}
$$

$$
y=r \sin \theta
$$

$y=2.00861046{ }^{\circ}$

## 11. Logarithm with Random Base

$$
\log _{y} x=\frac{\log b x}{\log b y} \quad\binom{b>0 \quad b \neq 1 \quad 0<x, y}{\text { here } b=10}
$$

-The logarithm with a random base is used in calculations in place of common logarithms (base 10).

## Example

Determine $\log _{5} 3$ for $x=3$ when base $y=5$.

## Operation

Display

AC 11 FMA
(Recall logarithm with random base.)

3 这球
(Enter value for $x$.)

5 EXE
(Enter value for $\bar{y}$.)

$$
\begin{array}{cc}
\hline 109 & y x=109 \\
x ? & x / 1 \\
\hline 109 & y x=109 \\
y^{?} & x / 1 \\
\hline 109 & y x=109 \\
L=0.682606194 \\
\hline
\end{array}
$$

$$
{ }_{n} \mathrm{P}_{r}=\frac{n!}{(n-r)!} \quad\binom{0 \leq r \leq n}{n, r \text { are integers }}
$$

-Permutation is used to determine the total number of arrangements possible when $r$ number of items are taken from a total of $n$ items. With this calculator, the maximam value of $n$ is 69 .

## Example

Determine the number of permutations possible when three items $(r=3)$ are taken from a total of 10 items $(n=10)$.

## Operation

Display

AC 12 FLA
(Recall permutation.)

10 ERE
(Enter value for $n$.)
3. [xE]
(Enter value for $r$.)
$P=n!/(n-r)!$


$$
P=r!/(n-r)!
$$

$r ? \quad 0$

$$
P=n!/(n-r)!
$$

$P=$ 720.
13. Comination

$$
{ }_{n} \mathrm{C}_{r}=\frac{n!}{r!(n-r)!} \quad\binom{0 \leq r \leq n}{n: r \text { rate inegegers }}
$$

- Combination is used to determine the total number of combinations possible when $r$ number of items are taken from a total of $n$ items. With this calculator, the maximum value of $n$ is 69 .


## Example

Determine the number of combinations of three items $(r=3)$ are possible from a total of 10 items ( $n=10$ ).
$A C 13$ MLA
(Recall combination.)

10 ExE
(Enter value for $n$.)

3 压紤
(Enter value for $r$.)

$$
\begin{array}{cc}
C=n!/(r!\times(n-r) \\
n ? & 0 .
\end{array}
$$

| $C=n!/(r!\times(n-r)$ |  |
| :---: | :---: |
| $r ?$ | 0 |


| $\mathrm{C}=\mathrm{n}!/(r!\times(n-r)$ |  |
| :---: | :---: |
| $c=$ | 120 |

## 14. Repeated Permutation

$$
n \Pi_{r}=n^{r} \quad(n, r \text { are positive integers })
$$

- Repeated permutation is used to determine the total number of arrangements possible when $r$ number of items are taken from a total of $n$ items, and when repeated use of the same item is allowed.


## Example

Determine the number of permutations possible when three items $(r=3)$ are taken from a total of 10 items $(n=10)$. Repeated use of the same item is allowed.

Operation
Display

## $\triangle \mathrm{AC} 14$ EMLA <br> (Recall repeated permutation.) <br> 10 EXE (Enter value for $n$.)

3 ExE
(Enter value for $r$.)

| $\pi=n x^{y} r$ |  |
| :---: | :---: |
| $n^{?}$ | m |

$$
\begin{array}{ll}
\pi=n x^{y} r & \\
r ? & 0 \\
&
\end{array}
$$

$$
\begin{array}{ll}
\pi=n x^{y} r & \\
\pi= & 1000 .
\end{array}
$$

15. Repeated Combination

$$
{ }_{n} \mathrm{H}_{r}=\frac{(n+r-1)!}{r!(n-1)!} \quad\left(\begin{array}{l}
0 \leqq r \\
1 \leqq n \\
n, r \text { are integers }
\end{array}\right)
$$

- Repeated combination is used to determine the total number of combinations possible when $r$ number of items are taken from a total of $n$ items, and when repeat use of the same item is allowed. With this calculafor, the maximum value of $n+r$ is 70 .


## Example

Determine the number of combinations of three items $(r=3)$ are possible from a total of 10 items $(n=10)$. Repeat use of the same item is allowed.

Operation
Display

AC 15 FMLA
(Recall repeated combination.)

10 致E
(Enter value for $n$.)

3 ExE
(Enter value for $r$.)

| $H=(n+r-1)!C r!$ |  |
| :---: | :---: |
| $n ?$ | 0. |

$$
\begin{array}{cc}
\mathrm{H}=(n+r-1)!/ r(r) \\
r ? & 0 .
\end{array}
$$

$$
\begin{aligned}
& H=(n+r-1)!/ r r^{\prime} \\
& H= \\
& 220 .
\end{aligned}
$$

## 16. Sum of Arithmetic Progression

$$
\mathrm{S}=\frac{n\{2 a+(n-1) d\}}{2}
$$

-This equation is used to determine the sum from the initial term to the $n$th term when the initial term and common difference are known.

## Example

Determine the sum up to $n=10$ for an arithmetic progression with an initial term of $a=1$ and a common difference of $d=2$.

| $A C 16$ MMLA <br> (Recall sum of arithmetic progression.) | $\begin{gathered} 5=n(2 a+(n-1) d) \\ n ? \end{gathered}$ |
| :---: | :---: |
| $\begin{aligned} & 10 \mathrm{ExE} \\ & \text { (Enter value for } n . \text { ) } \end{aligned}$ | $\begin{aligned} & 5=n(2 a+(n-1) d) \\ & a ? \end{aligned}$ |
| $\begin{aligned} & 1 \text { EXE] } \\ & \text { (Enter value for } a \text {.) } \end{aligned}$ | $\begin{gathered} 5=n(2 a+(n-1) d) \\ d ? \end{gathered}$ |
| $2 \text { ExE }$ <br> (Enter value for $d$.) | $\begin{aligned} & 5=n(2 a+(n-1) d) \\ & S= \end{aligned}$ |

## 17. Sum of Geometric Progression

$$
\mathrm{S}=\frac{a\left(r^{n}-1\right)}{r-1}, \quad(r \neq 1)
$$

-This equation is used to determine the sum from the initial term to the $n$th term when the initial term and common ratio are known.

## Example

Determine the sum up to $n=10$ for a geometric progression with an initial term of $a=1$ and a common ratio of $r=2$.

AC 17 . MLA
(Recall sum of geometric'progression.)

## 1 EXE

(Enter value for $a$.)

2 [xx]
(Enter value for $r$.)

## 10 EXE

(Enter value for $n$.)


$$
\begin{aligned}
& S=1^{2}+2^{2}+\cdots \cdots+n^{2}=\frac{1}{6} n(n+1)(2 n+1) \\
& (n \text { is a positive integer) }
\end{aligned}
$$

-This equation is used to determine the sum of the squares of numbers from 1 to $n$.

## Example

Determine the sum of squares from 1 to 10.

## 4 AC 18 PMLA <br> (Recall sum of squares.)

10 匡豕
(Enter value for $n$ ).

$$
\begin{gathered}
\operatorname{S}=n(n+1)(2 n+1) \\
n ?
\end{gathered}
$$

$$
\begin{aligned}
& 5=n(n+1)(2 n+1) \\
& 5=
\end{aligned}
$$

19. Sum of Cubes

$$
\begin{aligned}
& \mathrm{S}=1^{3}+2^{3}+\cdots \cdots+n^{3}=\left\{\frac{n(n+1)}{2}\right\}^{2} \\
& (n \text { is a positive integer })
\end{aligned}
$$

-This equation is used to determine the sum of the cubes of numbers from 1 to $n$.

## Example

Determine the sum of cubes from 1 to 10 .

Operation
Display

$$
\begin{aligned}
& 5=(n(n+1) / 2) 2 \\
& n ? \\
& \hline 5=(n(n+1) / 2) ? \\
& 5= \\
& \hline
\end{aligned}
$$

## 20. Imear Pooduct

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2} . \\
& \left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \text { are elements of vectors } \vec{a} \text { and } \vec{b} \text {. }
\end{aligned}
$$

- This equation is used to determine the scaler product (inner product) when the elements of two vectors are known.


## Example

Find the inner product for the following two vectors:

$$
\begin{aligned}
& \vec{a}=(3,14) \\
& \vec{b}=(-7,1)
\end{aligned}
$$

## Operation

Display

## AC 20 EMLA <br> (Recall inner product.)

3 ExE
-.. (Enter value for $a_{1}$.)

| $5=a 1 b 1+a 2 b 2$ |  |
| :--- | :--- |
| $a 1^{?}$ | 0. |

$5=a 1 b 1+a 2 b 2$
ط1? $\quad \because{ }_{0}^{\oplus}$
S=a1bi+a2b2
$a 2 ?$

$$
\begin{aligned}
& \text { S=a1b1+a2b2 } \\
& \text { b2? }
\end{aligned}
$$

$$
\begin{aligned}
& S=a 1 b 1+a 2 b 2 \\
& S_{=}
\end{aligned}
$$

# 21. Angle Formed by Vector 

$\cos \theta=\frac{(\vec{a}, \vec{b})}{|\vec{a}||\vec{b}|}=\frac{a_{1} b_{1}+a_{2} b_{2}}{\sqrt{a_{1}^{2}+a_{2}^{2}} \sqrt{{b_{1}^{2}}^{2}+b_{2}^{2}}} \quad\left(a_{1}, a_{2}, b_{1}, b_{2} \neq 0\right)$ $\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)$ are elements of vectors $\vec{a}$ and $\vec{b}$.
-This equation is used when the elements of two vectors are known to determine the angle formed by the two vectors.

## Example

Determine the angle formed by the following two vectors:
$\vec{a}(-2,5)$
$\vec{b}(-3,2)$

## Operation

MODE 4 EXE (Degree)
AC 21 FMLA
(Recall angle formed by vector.)
(1-1) 2 ExE
(Enter value for $a_{1}$.)
(-1) 3 [欧
(Enter value for $b_{1}$.)

5 EXE
(Enter value for $a_{2}$.)

2 ExE
(Enter value for $b_{2}$.)

| $\theta=$ cos | $($ (a1b1+ |
| :--- | ---: |
| $a 1 ?$ | 0 |


| $\theta=$ cos-l | $($ (aibit |
| :--- | :---: |
| $b 1 ?$ | 0 |


| $\theta=\cos -1$ | (a1bit |
| :--- | :---: |
| $a 己 ?$ | 0 |


| $\theta=\operatorname{CDS}-1$ | (ca1b1t |  |
| :--- | :---: | :---: |
| $b 2 ?$ | $\ldots$ | 0. |

$$
\begin{aligned}
\bar{\theta} & =\cos -1(\text { (alb1t } \\
\theta & =34.50852299^{\circ}
\end{aligned}
$$

## 22. Distance Between Two Points

$$
\begin{aligned}
& \ell=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& \left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \text { are coordinates of a point. }
\end{aligned}
$$

-This equation is used to determine the distance between two points when the $x, y$-coordinates of the points are known.

## Example

Determine the distance between points $P=(3,6)$ and $Q=(7,12)$.


Operation

(Recall distance between two points.)

7 EXE
(Enter value for $x_{2}$.)

3 EXE
(Enter value for $x_{1}$.)

12 Ex
(Enter value for $y_{2}$.)

6 ExE
(Enter value for $y_{1}$.)

| $1=\sqrt{ }((x 2-x 1) 2+1$ |  |
| :---: | :---: |
| $x 2 ?$ | 0. |

$$
\begin{aligned}
& 1=\sqrt{ }\left(\left(x 2-x_{1}\right) 2+[ \right. \\
& x_{1} ?
\end{aligned}
$$

$$
\begin{aligned}
& 1=\sqrt{ }((x 2-x 1) 2+( \\
& y 2 ?
\end{aligned}
$$

$$
\begin{array}{lc}
1=\sqrt{ }((x 2-x 1) 2+[ \\
y_{1} ? & 0
\end{array}
$$

$$
\begin{gathered}
1=\sqrt{ }((x 2-x 1) 2+( \\
1=7.211102551
\end{gathered}
$$

# 23. Distance Between Point and Straight Line 

$d=\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}$ $(a, b \neq 0)$
$\left(x_{1}, y_{1}\right)$ are coordinates of a point; $a, b$ and $c$ are constants.
-This equation is used to determine the distance between a point and a straight line when the $x, y$-coordinates of the point and the equation for the straight line are known.

## Example

Determine the distance between point $P(3,5)$ and straight line $2 x+5 y+1=0$.


Display

| AC 23 ( FMA <br> (Recall distance between point and straight line.) | $\begin{gathered} d=\text { RbS }\left(a x_{1}+b y_{\mathrm{E}}^{1}\right. \\ a ? \\ 0 \end{gathered}$ |
| :---: | :---: |
|  | $\begin{aligned} & d=\text { Pbs }\left(a x_{1}+b y_{1}\right. \\ & x_{1} ? \end{aligned}$ |
| $\begin{aligned} & 3 \text { EXE] } \\ & \text { (Enter value for } x_{1} \text { ) } \end{aligned}$ | $d=$ Rbs $[a x 1+b y 1$  <br> $b ?$ 0 |
| $\begin{aligned} & 5 \text { ExE } \\ & \text { (Enter value for } b \text {.). } \end{aligned}$ | $\begin{aligned} & d=\text { RbS } \quad\left(a x_{1}+b y_{1}\right. \\ & y_{1} ? \end{aligned}$ |
| $\begin{aligned} & 5 \text { EXEE } \\ & \text { (Enter value for } y_{1} \text { ). } \end{aligned}$ | $\begin{gathered} d=\text { PbS }\left(a x_{1}+b y^{1}{ }^{1}\right. \\ c ? \\ 0 \end{gathered}$ |
| $\begin{aligned} & 1 \text { ExE } \\ & \text { (Enter value for } c \text {.) } \end{aligned}$ | $\begin{gathered} d=\text { ABS }\left(a x_{1}+b y^{1}\right. \\ d=5.942250822 \end{gathered}$ |

## 24. Angle of Intersect for Two Straight Lines

$\tan \theta=\frac{m_{2}-m_{1}}{1+m_{1} m_{2}} \quad\left(m_{1} m_{2}+1\right)$
$m_{1}, m_{2}$ are slopes of lines.
-This equation is used to determine the angle of intersect for two straight lines when their slopes are known.

## Example

Determine the angle of intersect $\theta$ for the following two straight lines.
$y=2 x-13$
$y=0.5 x+2$


Display
MbDE 4 EXE (Degree)

AC 24 FMMA
(Recall angle of intersect for two straight lines.)

2 EXE
(Enter value for $m_{2}$.)
0.5 Exe]
(Enter value for $m_{1}$.)


mi?
0.

B=tan-l ( (m2-mi $\theta=36.86989765$

## 25. Area of a Triangle

$$
\begin{aligned}
& \mathrm{S}=\frac{1}{2} a h \quad(a, h \geq 0) \\
& a \text { is base of triangle, } h \text { is height of triangle }
\end{aligned}
$$

-This equation is used to determine the area of a triangle when the length of the base and the height of the triangle are known.

## Example

Determine the area of a triangle with a base of $a=9 \mathrm{~cm}$ and a height of $h=6.5 \mathrm{~cm}$.

## Operation

Display
$\triangle \mathrm{AC} 25$ [MLA
(Recall area of a triangle.)

9 Ex
(Enter value for $a$.)
6.5 [x]
(Enter value for $h$.)

S=ah/2
a?
$\stackrel{\circ}{0}$.

5=ah/2
h?
0.

S=ah/2
$5=$ $29.25^{\text {¹ }}$

## 26. Area of a Rectangle

$$
\begin{aligned}
& \mathrm{S}=a b \quad(a, b \geq 0) \\
& a \text { and } b \text { are sides of a rectangle. }
\end{aligned}
$$

- This equation is used to:determine the area of a rectangle when the lengths of its sides are known.


## Example

Determine the area of a rectangle that is $a=8 \mathrm{~cm}$ by $b^{\prime}=17 \mathrm{~cm}$.

## Operation

Display


$$
\begin{array}{lll}
5 & =a b \\
a ? & \therefore \cdots & 0 .
\end{array}
$$

$$
\begin{array}{ll}
5=a b & 0 \\
b ? & 0 \\
\hline
\end{array}
$$

| $5=a b$ |  |
| :---: | :---: |
| $5=$ | 136. |

S=ab
5.
136.

## 27. <br> Area of a Parallelogram (1)

$\mathrm{S}=a h \quad(a, h \geqq 0)$
$a$ is the base, $h$ is the height
-This equation is used to determine the area of a parallelogram when the length of the base and the height are known.

## Example

Determine the area of a parallelogram with a base of $a=9.2 \mathrm{~cm}$ and a height of $h=4.5 \mathrm{~cm}$.

## AC 27 EMLA

(Recall area of a parallelogram (1).)
9.2 ExE
(Enter value for $a$.)

| S=ah |  |
| :---: | :---: |
| a? |  |


| $5=a h$ |  |
| :---: | :---: |
| $h ?$ | $\cdots$ |

4.5 EXE
(Enter value for $h$.)

$$
\begin{array}{ll}
5=a h \\
S= & 41.4
\end{array}
$$

# 28. Area of a Parallelogram (2) 

$$
\begin{aligned}
& \mathrm{S}=a b \sin \alpha \quad\left(\quad\binom{a, b \geqq 0}{0^{\circ}<a<180^{\circ}}\right. \\
& a \text { and } b \text { are sides, } \alpha \text { is adjoining angle }
\end{aligned}
$$

-This equation is used to determine the area of a parallelogram when the length of two sides and their adjoining angle are known:

## Example

Two sides of a parallelogram are $a=7 \mathrm{~cm}$ and $b=12 \mathrm{~cm}$. The angle formed by these two sides is $\alpha=36$ degrees. Determine the area of the parallelogram.
(M00E 4] ExE (Degree)
AC 28 FMLA
(Recall area of a paralielogram (2).)

7 ExE
(Enter value for $a$.)

12 ExE
(Enter value for $b$.)

36 ExE
(Enter value for $\alpha$.)

$$
\text { S=absin } \alpha
$$

a?
$\stackrel{0}{0}$
S=absin $\alpha$
$b^{\text {? }} \quad 0^{\circ}$
S=absin $\alpha$
$\alpha$ ?
0.

S=absin $\alpha$
$S=49.37396119$

## 29. Area of a Trapezoid

$\mathrm{S}=\frac{1}{2}(a+b) h \quad(a, b, h \geq 0)$
$a$ is upper side, $b$ is base, $h$ is height
-This equation is used to determine the area of a trapezoid when the upper side, base, and height are known

## Example

Determine the area of a trapezoid with an upper side of $a=7 \mathrm{~cm}$, a base of $b=13 \mathrm{~cm}$ and a height of $h=3.6 \mathrm{~cm}$.

Operation
Display

AC 29 FILA
(Recall area of a trapezoid.)
7 Ex
(Enter value for $a$.)
13 Ex
(Enter value for $b$.)
3.6 EXC
(Enter value for $h$ )
$S=(a+b) h / 2$ $a$ ? 0

$$
\begin{array}{ll}
5=(a+b) h / 2 \\
b ? & 0
\end{array}
$$

$$
\begin{aligned}
& 5=(a+b) h / 2 \\
& h ?
\end{aligned}
$$

$\begin{array}{cc}S=(a+b) h / 2 \\ 5= & 36 .\end{array}$

## 30. Area of a Circle

```
S = \pir 2
ris radius
```

－This equation is used to determine the area of a circle when the radius is known．

## Example

Determine the area of a circle with a radius of $r=11.5 \mathrm{~cm}$ ．

```
AC 3O FMLA
(Recall area of a circle.)
11.5 ExE
(Enter value for r.)
```



## $5=\pi r 2$

$S=415.4756284^{\circ}$
31. Area of a Sector (1)
$\mathrm{S}=\frac{1}{2} r \ell \quad(r, \ell \geqq 0)$
$r$ is radius, $\ell$ is length of arc
-This equation is used to determine the area of a sector when its radius and arc are known.

## Example

Determine the area of a sector with a radius of $r=5 \mathrm{~cm}$ and an arc of $\ell=7 \mathrm{~cm}$.


AC 31 FMLA
(Recall area of a sector (1).)
5 EXE
(Enter value for $r$.)

7 ExE
(Enter value for $\ell$.)

$$
5=r 1 / 2
$$

$r$ ?
${ }^{\mathrm{I}}$.

$$
\begin{array}{cc}
5=r 1 / 2 & \\
1 ? & 0 \\
\hline
\end{array}
$$

$$
\begin{array}{ll}
5=r 1 / 2 & \\
5= & 17.5 \\
\hline
\end{array}
$$

32. Area of a Sector (2)

$$
\mathrm{S}=\frac{\pi r^{2} \theta}{360} \quad\binom{r \geqq 0}{0^{\circ} \leqq \theta \leqq 360^{\circ}}
$$

$r$ is radius, $\theta$ is central angle

- This equation is used to determine the area of a sector when its radius and central angle are known.


## Example

Determine the area of a sector with a radius of $r=6 \mathrm{~cm}$ and a central angle of $\theta=42$ degrees.

$\triangle A C 32$ FMLA
(Recall area of a sector-(2).)
6 ExE
(Enter value for $r$.)

42 柯
(Enter value for $\theta$.)
$5=\pi r^{2} \theta / 360$
$r$ ? 0.
$5=\pi r 2 \theta / 360$
$\theta ?$

$S=13.19468915^{\circ}$

## 33. Atea of an Ellise

$$
\mathrm{S}=\pi a b \quad(a, b \geqq 0)
$$

-This equation is used to determine the area of an ellipse when its major and minor radii are known.

## Example

Determine the area of an ellipse with a major radius of $a=24 \mathrm{~cm}$ and a minor radius of $b=17 \mathrm{~cm}$.

AC 33 FMLA
(Recall area of an
24 EXE
(Enter value for $a$.)
17 EXE
(Enter value for $b$.)

## S= $\quad$ ab <br> a?

0. 

## $5=\pi a b$ b?

0. 

$$
\begin{aligned}
& S=\pi a b \\
& S=1281.76980{ }^{\circ}
\end{aligned}
$$

## 34. Volume of a Sphere

$$
\begin{aligned}
& \mathrm{V}=\frac{4}{3} \pi r^{3} \quad(r \geqq 0) \\
& r \text { is radius }
\end{aligned}
$$

-This equation is used to determine the volume of a sphere when its radius is known.

## Example

Determine the volume of a sphere with a radius of $r=8 \mathrm{~cm}$.

## AC 34 FMLA

(Recall volume of a sphere.)

8 匡理
(Enter value for $r$.)
$\mathrm{U}=4 \pi r^{3} / 3$
$r$ ?
U=4 $\mathrm{Jr} \mathrm{r}^{\mathrm{J} / 3}$
$\mathrm{U}=2144.66058{ }^{\circ}$

## 35. Surface Area of a Sphere

$$
\begin{aligned}
& \mathrm{S}=4 \pi r^{2} \quad(r \geqq 0) \\
& r \text { is radius }
\end{aligned}
$$

-This equation is used to determine the surface area of a sphere when its radius is known.

## Example

Determine the surface area of a sphere with a radius of $r=5 \mathrm{~cm}$.

## Operation

Display

AC 35 NAA
(Recall surface area of a sphere.)

5 Ex
(Enter value for $r$.)
$S=4 \pi r 2$
$r$ ?
0.
$5=4 \pi r^{2}$
$\mathrm{S}=314.1592654^{\circ}$

## 36. Volume of a Circular Cylinder

$\mathrm{V}=\pi r^{2} h \quad(r, h \geqq 0)$
$r$ is radius of base, $h$ is height
-This equation is used to determine the volume of a circular cylinder when the radius of its base and its height are known.

## Example

Determine the volume of a circular cylinder with a height of $h=14 \mathrm{~cm}$ and a base of radius $r=6 \mathrm{~cm}$.

Display
$V=\pi r^{2} h$

## 0.

$$
\frac{r ?}{V=\pi r 2 h}
$$

$h$ ?
0

14 E XE
(Enter value for $h$.) .

$$
\begin{aligned}
& U=\pi r 2 h \\
& U=1583.362697 \\
& \hline
\end{aligned}
$$

# 37. Lateral Area of a Circular Cylinder 

$$
\mathrm{S}_{0}=2 \pi r h \quad(r, h \geqq 0)
$$

$r$ is radius of base, $h$ is height
-This equation is used to determine the lateral area of a circular cylinder when the radius of its base and its height are known.

## Example

Determine the lateral area of a circular cylinder with a height of $h=14 \mathrm{~cm}$ and a base of radius $r=6 \mathrm{~cm}$.

## AC 37 FMLA <br> (Recall lateral area of a circular cylinder.)

6 ExE
(Enter value for $r$.)

14 EXE
(Enter value for $h$.)

$$
\begin{array}{ccc}
\hline 50=2 \pi r h & & \\
r ? & 0
\end{array}
$$

$$
50=2 \pi r h
$$

$$
h \text { ? }
$$

$$
0 .
$$

$50=2 \pi r h$
$50=527.7875658$
38. Volume of a Pyramid

$$
\mathrm{V}=\frac{1}{3} \mathrm{~A} h \quad(\mathrm{~A}, h \geqq 0)
$$

A is area of base, $h$ is height
-This equation is used to determine the volume of a pyramid when its height and the area of its base are known.

## Example

Determine the volume of a pyramid with a height of $h=\overline{7} \mathrm{~cm}$ and a base of area $\mathrm{A}=56 \mathrm{~cm}^{2}$.

Operation


## 39. Volume of a Circular Cone

$$
\mathrm{V}=\frac{1}{3} \pi r^{2} h \quad(r, h \geqq 0)
$$

$r$ is radius of base, $h$ is height
-This equation is used to determine the volume of a circular cone when the radius of its base and its height are known.

## Example

Determine the volume of a circular cone with a height of $h=9 \mathrm{~cm}$ and a base of radius $r=2 \mathrm{~cm}$.

```
AC 39 [MLA
(Recall volume of a circular cone.)
2 ExE
(Enter value for r.)
9 ExE
(Enter value for h.)
```

$\square$
$V=\pi r$ ?h/3
$r$ ? 0
$\mathrm{U}=\pi \mathrm{r}^{2 h} / 3$
h ?
0.

$$
\mathrm{U}=\pi r^{2} \mathrm{~h} / 3
$$

$U=37.69911184$

## 40. Lateral Area of a Circular Cone

$$
\mathrm{S}_{0}=\pi r \ell \quad(r, \ell \geqq 0)
$$

$r$ is radius of base, $\ell$ is generatrix

- This equation is used to determine the lateral area of a circular cone when the radius of its base and its generatrix are known.


## Example

Determine the lateral area of a circular cone with a gerieratrix of $\ell=6 \mathrm{~cm}$ and a base of radius $r=3 \mathrm{~cm}$.

Operation
Display

AC 40 EMLA
(Recall lateral area of a circular cone.)

3 EXE
(Enter value for $r$.)

6 EXE
(Enter value for l )

> | $50=\pi r l$ |  |
| :---: | :---: |
| $r ?$ | 0. |

$$
50=\pi r 1
$$

1 ?
0.
$50=\pi r l$
So $=56.54866776$
41. Acceleration
$a=\frac{v_{2}-v_{1}}{t_{2}-t_{1}} \quad\left(t_{2}>t_{1} \geqq 0\right)$
$v_{2}$ is velocity for time $t_{2}, v_{1}$ is velocity for time $t_{1}$
-This equation is used to determine the average acceleration between two points in time when the velocities are known for the two different points in time.

## Example

Determine the average acceleration when the speed is $v_{1} \doteq 64 \mathrm{~km} / \mathrm{h}$ at $t_{\mathrm{l}}=2: 00$, and $v_{2}=72 \mathrm{~km} / \mathrm{h}$ at $t_{2}=2: 15$.

## Operation



## 42. Distance of Advance

$$
\mathrm{S}=v_{0} t+\frac{1}{2} a t^{2} \quad(t \geq 0)
$$

$v_{0}$ is initial velocity, $a$ is acceleration and $t$ is time
-This equation is used to determine the distance advanced in $t$ seconds when the initial velocity and acceleration are known.

## Example

Determine the distance advanced by a mass in $t=5$ seconds when the initial velocity is $v_{0}=12 \mathrm{~cm} / \mathrm{s}$ and the acceleration is $a=3 \mathrm{~cm} / \mathrm{s}^{2}$.
Operation Display
$\triangle \mathrm{AC} 42$ FMLA
(Recall distance of advance.)

12 EXE
(Enter value for $\nu_{0}$.)

5 EXE
(Enter value for $t$.)

3EXE
(Enter value for $a$.)

S=レ0t+ヨt $/ 2$
VO?
0.

S=v0t+at2/2
t ? $0^{\mathrm{a}}$
S=Vot+at2/2
$a$ ?
0.

S=vot+at2/2
$5=$
97.5

$$
\mathrm{S}=v_{0} t+\frac{1}{2} g t^{2} \quad(i \geqq 0)
$$

$\nu_{0}$ is initial velocity, $g$ is gravitational acceleration
-This equation is used to determine the distance of drop in $t$ seconds when the initial velocity is known.

## Example

Determine the distance of drop in $t=4$ seconds when the initial velocity is $v_{0}=26 \mathrm{~m} / \mathrm{s}$.

## Operation

 Display$\triangle \mathrm{AC} 43$ (mLA
(Recall distance of drop.)

26 ExE
(Enter value for $\nu_{0}$.)

4 欧
(Enter value for $t$.)

$$
\begin{aligned}
& 5=v 0 t+9 t 2 / 2 \\
& v 0 ?
\end{aligned}
$$

$$
\begin{array}{cc}
5=v 0 t+9 t 2 / 2 \\
t ? & 0
\end{array}
$$

$$
\begin{aligned}
& S=v 0 t+9 t 2 / 2 . \\
& S=\quad 182.4532
\end{aligned}
$$

## 44. Law of Universal Gravitation <br> $\mathrm{F}=\mathrm{G} \frac{\mathrm{M} m}{r^{2}} \quad(\mathrm{M}, m, r>0)$

M and $m$ are mass, $r$ is distance between two objects, G is universal gravitation constant
-This equation is used to determine the universal gravitation acting between two objects when the mass of each object and the distance between the two objects are known.

## Example

Determine the universal gravitation acting between two objects of masses $\mathrm{M}=12 \mathrm{~kg}$ and $m=8 \mathrm{~kg}$, when the distance between the masses is $r=6 \mathrm{~m}$.

## Operation

Display

AC 44 EMLA
(Recall law of universal gravitation.)

12 ExE
(Enter value for M.)

8EXE
(Enter value for $m$.)

6 ExE
(Enter value for $r$.)

## $F=G M m / r 2$ <br> M? <br> 0

$F=G M m / r 2$
m ?
0.

$$
\begin{array}{ll}
\hline F=G M m / r 2 & \\
r ? & 0 . \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \text { F=GMm } / r^{2} \\
& F=1.7792^{-10}
\end{aligned}
$$

## Cycle of Circular Motion (1)

$$
\mathrm{T}=\frac{2 \pi}{\omega} \quad(\omega \neq 0)
$$

$\omega$ is angular velocity
-This equation is used to determine the cycle of circular motion when the angular velocity is known.

## Example

Determine the cycle of circular motion for movement at an angular velocity of $\omega=2$ radians/s.

## Operation

Display

## AC45 4 ALA

(Recall cycle of circular motion (1).)

2 EXE
(Enter value for $\omega$.)

$$
\begin{aligned}
& \mathrm{T}=2 \pi / \omega \\
& \omega ? \\
& \mathrm{~T}=2 \pi / \omega \\
& \mathrm{T}=3.141592654
\end{aligned}
$$

## 46. Cycle of Circular Motion (2)

$$
\mathrm{T}=\frac{2 \pi r}{v} \quad(v \neq 0)
$$

$r$ is radius of circular motion, $v$ is velocity of motion
hen the ancis equation is used to determine the cycle of circular motion when the radius id velocity of the motion are known.

## cample

locity of $\omega$ termine the cycle of circular motion for movement around a radius of $r=12 \mathrm{~cm}$ a velocity of $v=4 \mathrm{~cm} / \mathrm{s}$.

Operation

## - AC 46 MMA

(Recall cycle of circular motion (2).)

12 Exe
(Enter value for $r$.)

$$
\begin{array}{cc}
\mathrm{T}=2 \pi r / V & \\
v ? & 0
\end{array}
$$

$$
\begin{aligned}
& \mathrm{T}=2 \pi \mathrm{r} / \mathrm{V} \\
& \mathrm{~T}=18.84955592
\end{aligned}
$$

## 47. Cycle of Circular Motion (3)

$$
\mathrm{T}=\frac{1}{f} \quad(f>0)
$$

$f$ is frequency

- This equation is used to determine the cycle of circular motion when the frequency of the motion is known.


## Example

Determine the cycle of circular motion when its frequency is $f=13$.

## Operation

Display

## AC47 FMLA

(Recall cycle of circular motion (3).)

$$
\begin{array}{cc}
T=1 / f & \\
f ? & \ddots 0
\end{array}
$$

13 匡E
(Enter value for $f$.)

$$
\begin{aligned}
& T=1 / f \\
& T=0.076923076 \\
& \hline
\end{aligned}
$$

# 48. Simple Harmonic Motion (1) 

$$
\begin{aligned}
& x=r \sin \theta \quad(r>0) \\
& r \text { is amplitude, } \theta \text { is phase }
\end{aligned}
$$

-This equation is used to determine the displacement when the oscillation amplitude and phase are known.

## Example

Determine the displacement for an amplitude of $r=4.2 \mathrm{~cm}$ and a phase of $\theta=30$ degrees.

## Operation

Display
M00E 4 EXE (Degree)
AC 48 FMLA
(Recall simple harmonic motion (1).)
4.2 [xE]
(Enter value for $r$.)

30 ExE
(Enter value for $\theta$.)

$$
\begin{array}{cc}
x=r \sin \theta \\
r ? & 0
\end{array}
$$

$x=r \sin \theta$
$\theta$ ?
${ }^{\circ}$
$x=r \sin \theta$
$x=$
2.1

# 49. Simple Harmonic Motion 

$$
x=r \sin \omega t \quad(r>0)
$$

$r$ is amplitude, $\omega$ is angular velocity, $t$ is time

- This equation is used to determine the displacement when the amplitude of simple harmonic motion, time and angular velocity are known.


## Example

Determine the displacement for a simple harmonic motion with an amplitude of $r=5 \mathrm{~cm}$, time $t=3 \mathrm{~s}$ and an angular velocity of $\omega=30$ radians $/ \mathrm{s}$.

Operation
(400E 5 ExE (Radian)
AC49 FMMA
(Recall.simple harmonic motion (2).)

5 ExE
(Enter value for $r$.)

30 ExE
(Enter value for $\omega$.)

3 ExE
(Enter value for $t$.)

Display

| $x=r \boldsymbol{5 i n} \omega t$ |  |  |
| :---: | :---: | :---: |
| $r ?$ |  |  |
| $r$ |  | 0. |

$$
\begin{array}{ccc}
x=r \sin \omega t & \\
\omega ? & & 0
\end{array}
$$

$$
\begin{array}{cc}
x=r \text { sin } \omega t \\
t ? & \\
& \\
\end{array}
$$

$$
\begin{aligned}
& x=r \sin \omega \mathrm{t} \\
& x=4.469983319^{\text {B }}
\end{aligned}
$$

# 50. Cycle of Spring Pendulum <br> $\mathrm{T}=2 \pi \sqrt{\frac{m}{k}} \quad(m>0, k>0)$ 

$m$ is mass, $k$ is spring constant
-This equation is used to determine the simple oscillation cycle when the mass of the weight and the spring constant are known.

## Example

Determine the simple oscillation cycle for a spring with a constant of $\dot{k}=3.6 \mathrm{~N} / \mathrm{m}$ with a weight of mass $m=12 \mathrm{~kg}$ attached to its end.

AC 50 [mLA
(Recall cycle of spring pendulum.)
12 ExE
(Enter value for $m$.)
3.6 ExE
(Enter value for $k$.)
$T=2 \pi \sqrt{ }(\mathrm{~m} / \mathrm{k})$
m ?

$$
\begin{array}{ll}
\hline \mathrm{T}=2 \pi \sqrt{ }(\mathrm{~m} / \mathrm{k}) & \\
\mathrm{k} ? & 0 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& T=2 \pi \sqrt{ }(\mathrm{~m} / \mathrm{k}) \\
& T=11.47147442
\end{aligned}
$$

$\mathrm{F}=-m g \sin \theta \quad(m>0)$ $m$ is mass of weight, $\theta$ is the angle of deflection from perpendicular, $g$ is gravitational acceleration


- This equation is used to determine the movement force of a weight when its mass and the angle of deflection $\theta$ are known.


## Example

Determine the movement force of a weight with a mass of $m=34 \mathrm{~kg}$ forming a simple pendulum with an angle of deflection of $\theta=48$ degrees.

Operation
M000 4 [远E (Degree)
AC 51 EMLA
(Recall simple pendulum (1).)

34 ExE
(Enter value for $m$.)

48 Exe
(Enter value for $\theta$.)
$F=-m 95$ in $\theta$
$m$ ?
0.
$F=-m 95$ in $\theta$
$\theta$ ?
I

F=-m9sin $\theta$
$\mathrm{F}=247.7838809$

## 52. Simple Pendulum (2) $\mathrm{F}=-\frac{m g}{\ell} x \quad\binom{\ell>0}{m>0}$

 $m$ is mass of weight, $\ell$ is length of string, $x$ is location of weight, $g$ is gravitational acceleration

- This equation is used to determine the movement force of a weight when its mass, the length of the string, and the position of the mass are known.


## Example

Determine the movement force of a weight with a mass of $m=28 \mathrm{~kg}$ forming a simple pendulum with a string of length $\ell=1.5 \mathrm{~m}$, when the weight is at position $x=1.2 \mathrm{~m}$.

> Operation

AC 52 (ExLA
(Recall simple pendulum (2):)

## 28 ExE

(Enter value for $m$.)
1.2 ExE
(Enter value for $x$.)
1.5 ExE
(Enter value for $\ell$.)

$$
\begin{array}{ll}
F=-m 9 x / 1 & \\
m ? & 0
\end{array}
$$

$\mathrm{F}=-\mathrm{mg} x / 1$
$x$ ?
a

$$
\begin{array}{cc}
\hline \mathrm{F} & =-\mathrm{mg} \boldsymbol{\mathrm { m }} / 1 \\
1 ? & 0 \\
1 ? & 0 .
\end{array}
$$

$$
\begin{aligned}
& \mathrm{F}=-\mathrm{mg} x / 1 \\
& F=-219.66896
\end{aligned}
$$

-This equation is used to determine the cycle of a simple pendulum when the length of the string is known.

## Example

Determine the cycle of a simple pendulum with a string $\ell=1.8$ meters long.

## Operation

Display

AC 53 EMMA
(Recall cycle of simple pendulum.)
1.8 ExE
(Enter value for $\mathrm{\ell}$.)

$$
\begin{aligned}
& \mathrm{T}=2 \pi \sqrt{ }(1 / 9) \\
& 1 ? \\
& \hline \mathrm{~T}=2 \pi \sqrt{ }(1 / 9) \\
& \mathrm{T}=2.691880541
\end{aligned}
$$

## 54. Centrifugal Force (1)

$\mathrm{F}=m r \omega^{2} \quad(m, r, \omega>0)$
$m$ is mass, $r$ is radius, $\omega$ is angular velocity
-This equation is used to determine the centrifugal force for an object moving in a circular pattern when the mass, radius' and angular velocity are known.

## Example

Determine the centrifugal force for an object with a mass of $m=4.2 \mathrm{~kg}$, moving at an angular velocity of $\omega=0.8$ radians $/ \mathrm{s}$, in a circular pattern with a radius of $r=1.6 \mathrm{~m}$.

## Operation

Display

## AC 54 FMLA

(Recall centrifugal force (1).)

### 4.2 ExE

(Enter value for $m$.)
1.6 EXE
(Enter value for $r$.)
0.8 ExE
(Enter value for $\omega$.)

## $F=m r \omega^{2}$

m ?
$\stackrel{\circ}{0}$.

## F=mrez

$r$ ?
0.

$$
F=m r \omega 2
$$

$\omega^{6}$ ?
0.

## F=mrwe

F=
$4.3008^{\circ}$
-This equation is used to determine the centrifugal force for an object moving in a circular pattern when the mass, radius and velocity are known.

## Example

Determine the centrifugal force for an object with a mass of $m=60 \mathrm{~kg}$, moving at a velocity of $\nu=1.4 \mathrm{~m} / \mathrm{s}$, in a circular pattern with a radius of $r=3 \mathrm{~m}$.

## Operation

## Display

## AC 55 FMLA <br> (Recall centrifugal force (2).)

## 60 ExE <br> (Enter value for $m$.)

1.4 ExE]
(Enter value for $\%$.)

3 EXE]
(Enter value for $r$.)

$$
\begin{array}{|cc|}
\hline \begin{array}{cc}
\mathrm{F}=\mathrm{m} \cup 2 / \mathrm{r} \\
\mathrm{r} ? & \\
\hline \mathrm{~F}=\mathrm{m} \vee 2 / \mathrm{r} & 0 \\
\mathrm{~F}= & 39.2 \\
\hline
\end{array} \\
\hline
\end{array}
$$

$$
\begin{array}{ll}
\hline F=m \cup 2 / r & \\
v ? & 0 \\
\hline
\end{array}
$$

0. 

## 56. Potential Energy

$\mathrm{U}_{\mathrm{p}}=m g h \quad(m, h>0)$
$m$ is mass, $h$ is height, $g$ is gravitational acceleration.
-This equation is used to determine the potential energy for an object when its mass and height (potential) are known.

## Example

Determine the potential energy for an object with a mass of $m=3 \mathrm{~kg}$ at a height (potential) of $h=5 \mathrm{~m}$ from the ground.

AC 56 FMA
(Recall potential energy.)

3EXE
(Enter value for $m$.)

5 ExE
(Enter value for $h$.)

## Up=mgh

m ?
$\stackrel{\circ}{0}$
Up=mgh
$h$ ?
$\stackrel{\square}{0}$.
$\mathrm{Up}=\mathrm{mgh}$
$U_{p}=147.09975^{\circ}$

## 57. Kinetic Energy

$$
\mathrm{U}_{\mathrm{k}}=\frac{1}{2} m v^{2} \quad(m, v>0)
$$

$m$ is mass, $v$ is velocity
-This equation is used to determine the kinetic energy for an object when its mass and velocity are known.

## Example

Determine the kinetic energy for an object with a mass of $m=8 \mathrm{~kg}$ and a velocity of $v=2 \mathrm{~m} / \mathrm{s}$.

## Operation

Display

Uk = $\mathrm{m} V \mathrm{Z} / 2$
AC 57 EMLA
(Recall kinetic energy.)

8 Exe
(Enter value for $m$.)

.(Enter value for $\nu$.)

$$
m^{?}
$$

$$
0 .
$$

$\mathrm{Uk}=\mathrm{m} \cup \mathrm{Z} / 2$
V ?
0

$$
U k=m \vee 2 / 2
$$

Uk $=$
16.

## 58. Elastic Energy

$$
\mathrm{U}_{\mathrm{p}}=\frac{1}{2} k x^{2} \quad(k, x>0)
$$

$k$ is elastic constant, $x$ is elongated length
-This equation is used to determine the elastic energy for an object when the elastic constant and elongated length are known.

## Example

Determine the elastic energy for an object with an elastic constant of $\dot{k}=1.8 \mathrm{~N} / \mathrm{m}$ and a elongated length of $x=0.4$ meters.

Operation
Display

AC 58 FMLA
(Recall elastic energy.)
1.8 Exe
(Enter value for $k$.)
0.4 EXE
(Enter value for $x$.)

Up=k $=2 / 2$

$k$ ? $\quad$| 0 |
| :--- |
| 0 |

Up $=k x 2 / 2$
$x$ ? 0.
$U_{p}=k x$ 2/2
$U_{p}=$
0.144
59. Energy of Rotational Body

$$
\mathrm{E}=\frac{1}{2} \mathrm{I} \omega^{2} \quad(\mathrm{I}, \omega>0)
$$

I is moment of inertia, $\omega$ is angular velocity
-This equation is used to determine the energy of a rotational body when its moment of inertia and angular velocity are known.

## Example

Determine the energy of a rotational body with a moment of inertia of $\mathrm{I}=2.2$ $\mathrm{kg} \cdot \mathrm{m}^{2}$ and an angular velocity of $\omega=3.8$ radians $/ \mathrm{s}$.

## $A C 59$ FMLA

(Recall energy of rotational body)
2.2 ExE
(Enter value for I.)
3.8 ExE
(Enter value for $\omega$.)

$$
E=I \omega 2 / 2
$$

I ?
0.

$$
E=I \omega 2 / 2
$$

$\omega$ ?
0

$$
\begin{array}{ll}
E=I \omega 2 / 2 \\
E= & 15884
\end{array}
$$

## 60. Sound Intensity

$$
\mathrm{I}=\frac{\mathrm{P}}{4 \pi r^{2}} \quad(r>0)
$$

P is output from sound source, $r$ is distance from sound source.
-This equation is used to determine the sound intensity when the output and distance from the sound source are known.

## Example

Determine the sound intensity for an output of $\mathrm{P}=2.5 \times 10^{-3} \mathrm{~W}$ at a distance of $r=2 \mathrm{~m}$ from the sound source.

## $A C 60$ FMLD <br> (Recall sound intensity.)

2.5 EXP ( -1 EXE
(Enter value for $P$.)

2医E
(Enter value for $r$.)

$$
I=P / 4 \pi r 2
$$

$\mathrm{P}^{\text {? }}$
$\stackrel{1}{0}$

$$
\mathrm{I}=\mathrm{P} / 4 \pi r 2
$$

$r$ ?
$\stackrel{\circ}{0}$

$$
I=P / 4 \pi r 2
$$

$\mathrm{I}=4.97359197^{\circ} 2^{-05}$

# 61. <br> <br> Velocity of Wave Transmitted 

 <br> <br> Velocity of Wave Transmitted}

## by a Chord

$v=\sqrt{\frac{\mathrm{T}}{\sigma}} \quad(\mathrm{T}, \sigma>0)$
T is tensile strength of chord, $\sigma$ is linear density
(= mass per 1 cm of chord)

- This equation is used to determine the velocity of a wave transmitted by a chord when the tensile strength of the chord and the mass per 1 cm of chord are known.


## Example

Determine the velocity of a wave transmitted by a chord with a tensile strength of $T=2.4$ dyn and a linear density of $\sigma=2 \mathrm{~g} / \mathrm{cm}$.


$V=\sqrt{ }(T / \sigma)$
$\sigma$ ?

$v=\sqrt{ }(T / \delta)$
$v=1.095445 .115$
$f=f_{0} \frac{v-u}{v-v_{0}} \quad\left(v \neq v_{0}, f_{0}>0, \frac{v-u}{v-v_{0}}>0\right)$
$f_{0}$ is oscillation frequency of sound source, $v$ is acoustic velocity, $u$ is speed of movement of observer, $v_{0}$ is speed of sound source
-This equation is used to determine the oscillation frequency of a sound heard by an observer moving in the same direction as the sound source when the source oscillation frequency and acoustic velocity, as well as the speeds of the sound source and observer are known.

## Example

Determine the oscillation frequency heard by an observer moving at a speed of $u=8 \mathrm{~m} / \mathrm{s}$ in the same direction as a sound source moving at a speed of $v_{0}=12 \mathrm{~m} / \mathrm{s}$. The oscillation frequency of the source is $f_{0}=522 \mathrm{~Hz} / \mathrm{s}$, and the acoustic velocity is $v=340 \mathrm{~m} / \mathrm{s}$ ( 15 degrees C air temperature).

Display

AC 62 FMLA
(Recall doppler effect.)
522 ExE
(Enter value for $f_{0}$.)

## 340 ExE

(Enter value for $v$.)

| $f=f 0(V-U) /(V-V$ |  |
| :---: | :---: |
| $f 0 ?$ | 0. |


| $f=f 0(v-u) /\left(v-v^{\circ}\right.$ |  |
| :---: | :---: |
| $v ?$ | 0. |


| $f=f 0(v-u) /(v-v$ |  |
| :---: | :---: |
| $u ?$ | 0. |


| $f=f 0(v-u) /(v-v$ |  |
| :--- | :--- |
| $v o ?$ | 0. |

(Enter value for $u$.)

12 ExE
(Enter value for $v_{0}$.)

$$
\begin{aligned}
& f=f 0(v-u) /(v-v \\
& f=528.3658537
\end{aligned}
$$

## 63. Relative Index of Refraction

$n=\frac{\sin i}{\sin r} \quad(i, r>0)$
$i$ is angle of incidence, $r$ is angle of refraction

-This equation is used to determine the relative angle index of refraction for medium II relative to medium I when the angle of incidence and angle of refraction are known when a light enters medium II from medium I.

## Example

Determine the relative index of refraction for an angle of incidence $i=62$ degrees, and an angle of refraction $r=48$ degrees.

Operation
Display
MODE 4 EXE (Degree)
$A C 63$ EMLA
(Recall relative index of refraction.)

62 ExE
(Enter value for $i$.)

48 ExE
(Enter value for $r$.)

$n=5$ in i/sin r
$n=1.188123179$

## 64. Critical Angle of Incidence

$\sin i C=\frac{1}{n_{12}} \quad\left(1 \leqq n_{12}\right)$.
$n_{12}$ is relative index of refraction of medium II relative to I
-This equation is used to determine the critical angle of incidence at which refracted rays cease to exist (becoming total reflection) when the relative index of refraction of medium II relative to I is known.

## Example

Determine the critical angle of incidence when the relative index of refraction is $n=1.33$.

AC64 FMLA
(Recall critical angle of incidence.)
1.33 ExE
(Enter value for $n$.)

$$
\begin{aligned}
& \text { ic=5in-1 }(1 / n) \\
& n ? \\
& i c=5 i n-1 \quad(1 / n) \\
& i c=48.75346663
\end{aligned}
$$

- This equation is used to determine pressure for a gas when its number of mols, absolute temperature and volume are known.


## Example

Determine the pressure of a $n=3 \mathrm{~mol}$ gas with an absolute temperature of $\mathrm{T}=280 \mathrm{~K}$ and a volume of $V=5 \mathrm{~m}^{3}$.

Operation
Display
AC65 FMLA
(Recall equation of state of ideal gas (1).)

3 ExE
(Enter value for $n$.)
280 ExE
(Enter value for T .)
5 E䄸
(Enter value for V.)

$P=n R T / U$
$T$ ?
$\stackrel{8}{0}$.
$P=n R T / U$
U?
$\stackrel{8}{\circ}$.

$$
\mathrm{P}=\mathrm{n} \mathrm{RT} / \mathrm{U}
$$

$P=1396.82088^{\circ}$

## 66. Equation of State of Ideal Gas <br> (2)

$$
\mathrm{V}=\frac{n \mathrm{RT}}{\mathrm{P}} \quad(n, \mathrm{~T}, \mathrm{P}>0)
$$

$n$ is number of mols, T is absolute temperature, P is pressure, $R$ is gas constant
-This equation is used to determine volume for a gas when its number of mols, absolute temperature and pressure are known.

## Example

Determine the volume of a $n=2 \mathrm{~mol}$ gas with an absolute temperature of $\mathrm{T}=242 \mathrm{~K}$ and a pressure of $P=30 \mathrm{~N} / \mathrm{m}^{2}$.

Operation

AC 66 FMLA
(Recall equation of state of ideal gas (2).)

2 ExE
(Enter value for $n$.)

242 ExE
(Enter value for T.)

30 酮
(Enter value for P.)

Display

## $\mathrm{U}=\mathrm{nRT} / \mathrm{P}$ <br> $n$ ?

0. 

U=nRT/P
T?
${ }^{\circ}$
$\begin{array}{ll}U=n R T / P & \\ P ? & 0 .\end{array}$
$U=n R T / P$
$U=134.139148^{\circ}$

## 67. Equation of State of Ideal Gas (3)

 $\mathrm{T}=\frac{\mathrm{PV}}{n \mathrm{R}} \quad(\mathrm{P}, \mathrm{V}, n>0)$$n$ is number of mols, P is pressure, V is volume, R is gas constant
-This equation is used to determine absolute temperature for a gas when its number of mols, pressure, and volume are known.

## Example

Determine the absolute temperature of a $n=3 \mathrm{~mol}$ gas with a pressure of $\mathrm{P}=24$ $\mathrm{N} / \mathrm{m}^{2}$ and volume of $\mathrm{V}=8 \mathrm{~m}^{3}$.
$T=P U / n R$

0.
$T=P U / n R$
U?
0
$T=P U / n R$
n ?
0.
$\mathrm{T}=\mathrm{P} \mathrm{V} / \mathrm{nR}$
$T=7.697479436^{\circ}$

## 68. Equation of State of Ideal Gas (4) <br> $n=\frac{\mathrm{PV}}{\mathrm{RT}} \quad(\mathrm{P}, \mathrm{V}, \mathrm{T}>0)$ <br> P is pressure, V is volume, T is absolute temperature, $R$ is gas constant

-This equation is used to determine the number of mols for a gas when its pressure, volume, and absolute temperature are known.

## Example

Determine the number of mols of a gas with a pressure of $\mathrm{P}=32 \mathrm{~N} / \mathrm{m}^{2}$, a volume of $\mathrm{V}=6 \mathrm{~m}^{3}$, and an absolute temperature of $\mathrm{T}=246 \mathrm{~K}$.

## Operation

Display

AC 68 FMLD
(Recall equation of state of ideal gas (4).)
32 ExE
(Enter value for P.)

6 EXE
(Enter value for V.)

$$
\mathrm{n}=\mathrm{P} \cup / \mathrm{RT}
$$

T?
".

$$
\begin{aligned}
& \mathrm{n}=\mathrm{PU} / \mathrm{RT} \\
& \mathrm{n}=0.0938717
\end{aligned}
$$

## 69. Quantity of Heat

$\mathrm{Q}=m c \mathrm{~T}$
$m$ is mass, $c$ is specific heat, T is temperature.
-This equation is used to determine the quantity of heat required to raise the temperature of an object $T$ degrees $C$ when the mass and specific heat of the object are known.

## Example

Determine the quantity of heat required to raise wood with a mass of $m=460 \mathrm{~g}$ and specific heat of $c=0.6 \mathrm{cal} / \mathrm{deg} \cdot \mathrm{g}$ by $\mathrm{T}=10$ degrees C .

## Operation

Display

| AC69 FMLA <br> (Recall quantity of heat.) | $\begin{array}{cc} \hline \mathrm{Q}=\mathrm{mCT} & \vdots \\ \mathrm{~m} ? & 0 . \end{array}$ |  |
| :---: | :---: | :---: |
|  |  |  |
|  | $\begin{gathered} \mathrm{Q}=\mathrm{mCT} \\ \mathrm{C} ? \end{gathered}$ | $\stackrel{\square}{0}$ |
| $\begin{aligned} & 0.6 \text { EXE] } \\ & \text { (Enter value for } c . \text {.) } \end{aligned}$ | $Q=m C T$ $T ?$ | ${ }_{0}^{10 .}$ |
| $10 \text { 梐E }$ <br> (Enter value for T .) | $\begin{gathered} Q=\mathrm{mcT} \\ Q= \end{gathered}$ | $2760$ |

## 70. Coulomb's Law

$\mathrm{F}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Q} q}{r^{2}} \quad(r>0)$
Q and $q$ are sizes of two electric charges, $r$ is distance between charges, $\varepsilon_{0}$ is permittivity.
-This equation is used to determine the motive force between two electric charges when the size of the charges and the distance between them are known.

## Example

Determine the motive force between two electric charges of sizes $\mathrm{Q}=3 \times 10^{-5}$ C (Coulombs) and $q=2 \times 10^{-5} \mathrm{C}$, with a distance of $r=0: 5 \mathrm{~m}$ between the charges.

## Operation

Display

```
AC 70 EmA
(Recall Coulomb's law.)
3 达 -5 EXE
(Enter value for Q.)
2 EXP) \((-1) 5\) EXE
(Enter value for \(q\).)
0.5 瞖
(Enter value for \(r\).)
```

$$
\begin{array}{cc}
F=(1 / 4 \pi E 0) \times Q q / \\
Q ? & 0,
\end{array}
$$


$F=\left(1 / 4 \pi \mathbb{E}_{0}\right) \times Q 9 /$
$F=21.57012429$
$\mathrm{F}=i \mathrm{~B} \ell \sin \theta \quad\left(\ell>0,0^{\circ} \leqq|\theta| \leqq 90^{\circ}\right)$
F is motive force of conductor，$i$ is current flowing through conductor， $B$ is magnetic flux density，$P$ is Jength of conductor，$\theta$ is angle formed by conductor and magnetic field
－This equation is used to determine the motive force for a current flowing in a conductor which is caused within a magnetic field of uniform magnetic flux density．

## Example

Determine the motive force of a conductor when a current of $i=4 \mathrm{~A}$ flows through a conductor of length $\ell=1.2 \mathrm{~m}$ ．The angle between the conductor and a uniform magnetic field with a magnetic flux density of $\mathrm{B}=0.7 \mathrm{~T}$ is $\theta=30$ degrees．

Operation
Display
MODE 4 EXE（Degree）
AC 71 ［mLA
（Recall magnetic force．）

4 ExE
（Enter value for $i$ ．）
0.7 EKE
（Entèr value for B．）
1.2 医E
（Enter value for $\ell$ ．）

30 잩
（Enter value for $\theta$ ．）

F＝i日lsin $\theta$
i？
${ }^{\circ}$
$F=i \operatorname{Bisin} \theta$
B？
$\stackrel{\oplus}{0}$ ．
F＝iBlsin $\theta$
$1 ? \quad 0$.
F＝i日lsin $\theta$
$\theta$ ？
0.

$$
\text { F=i日lsin } \theta
$$

$F=1.68^{8}$

# 72. Resistance of a Conductor $\mathrm{R}=\rho \frac{\ell}{\mathrm{S}} \quad(\mathrm{S}, \ell, \rho>0)$ 

$\ell$ is length of conductor, S is cross sectional area of conductor, $\rho$ is resistance of material from which conductor is formed
-This equation is used to determine the resistance of a conductor when the length and cross sectional area, as well as the resistance of the material from which the conductor is made are known.

## Example

Determine the resistance of copper wire for a length of $\ell=20 \mathrm{~m}$ and cross sectional area of $\mathrm{S}=1.6 \mathrm{~mm}^{2}\left(1.6 \times 10^{-6} \mathrm{~m}^{2}\right)$. (The resistance of copper wire is $\rho=1.72 \times 10^{-8} \mathrm{ohm} \cdot \mathrm{m}$.)

AC 72 FMLA :
(Recall resistance of a conductor.)
$1.72 \mathrm{ExP}(-) 8) \mathrm{EXE}$
(Enter value for $\rho$.)

20 ExE
(Enter value for $\ell$ )
1.6 EXP $(-) 6$ EXE
(Enter value for S .)


$$
\mathrm{R}=\rho 1 / 5
$$

1 ?
0.

$$
\begin{array}{cc}
\mathrm{R}=\mathrm{P} 1 / \mathrm{S} & \\
\mathrm{~S} ? & 0 .
\end{array}
$$

$$
\begin{array}{cc}
\hline \mathrm{R}=\rho \mathrm{l} / \mathrm{S} & \\
\mathrm{R}= & 0.215
\end{array}
$$

## 73. Frequency of Electric Oscillation

$$
f=\frac{1}{2 \pi \sqrt{\mathrm{LC}}} \quad(\mathrm{~L}, \mathrm{C}>0)
$$

L is self-inductance, C is electric capacity
-This equation is used to determine the harmonic oscillation frequency of a circuit when the self-inductance and electric capacity of the condensor are known.

## Example

Determine the harmonic oscillation frequency of a circuit with self-inductance $\mathrm{L}=60 \mathrm{mH}$ (millihenry), and an electric capacity of $\mathrm{C}=90 \mathrm{pF}$.


$f=1 / 2 \pi \sqrt{ }(L C)$
C?
$f=1 / 2 \pi \sqrt{(L C})$
$f=68489.38267$

$$
\begin{aligned}
& f=1 / 2 \pi \sqrt{ }(L C) \\
& f=68.4893826703
\end{aligned}
$$

## 74. Average Gaseous Molecular Speed $v=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}}$ ( $\mathrm{M}, \mathrm{T}>0$ )

T is absolute temperature, M is molecular weight, R is gas constant
-This equation is used to determine average gaseous molecular speed for a gas when its temperature and molecular weight are known.

## Example

Determine the average gaseous molecular speed for oxygen which has a molecular weight of $\mathrm{M}=32 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}$ and atmospheric temperature of 15 degrees C (absolute temperature $\mathrm{T}=288.2 \mathrm{~K}$ ).

Operation
$\triangle A C 74$ MLA
(Recall average gaseous molecular speed.)
288.2 ExE
(Enter value for T .)

(Enter value for M.)

Display

```
\(v=\sqrt{(3 R T / M)}\)
T?
    0.
```

$V=\sqrt{ }(3 R T / M)$ $M$ ?
$\stackrel{\circ}{0}$.
$V=\sqrt{ }(3 R T / M)$
$v=473.9672617$

## 75. Electronic Kinetic Energy in Magnetic Field

$\mathrm{T}=\frac{1}{2} m v^{2}=\frac{1}{2} \frac{q^{2} \mathrm{~B}^{2}}{m} \mathrm{R}^{2} \quad(m>0, \mathrm{~B}>0, \mathrm{R}>0)$
T is kinetic energy, $q$ is electron charge, B is magnetic flux density, $m$ is electron mass, R is radius of circular motion
-This equation is used to determine the electronic kinetic energy when the radius of circular motion of the electrons determined by the magnetic flux density of the magnetic field is known.

## Example

Determine the kinetic energy of electrons moving in a circle with a radius of $R=1.2 \times 10^{-1} \mathrm{~m}$, within a magnetic field with a magnetic flux density of $\mathrm{B}=0.8$ $\mathrm{Wb} / \mathrm{m}^{2}$ ( $\mathrm{Wb}=\mathrm{Weber}$ ).

Operation

## AG 75 FMA

(Recall electronic kinetic energy in magnetic fieid.)

(Enter elementary charge.)
0.8 EXE
(Enter value for B.)
$1.2 \operatorname{ExP} 1$ EXE
(Enter value for R.)

(Enter electron mass.)

Display
$T=92 \mathrm{~B} 2 \mathrm{R} 2 / 2 \mathrm{~m}$
q? 0

## $T=92 B 2 R 2 / 2 m$ <br> $B$ ? <br> 0.

$$
T=92 B 2 R 2 / 2 m
$$

R?
0.

$$
\begin{array}{ll}
\hline \text { T=q2B2R2/2m } \\
m ? & 0 .
\end{array}
$$

$$
\begin{aligned}
& T=\text { q } 2 \mathrm{~B} 2 R 2 / 2 m^{\mathrm{E}} \\
& T=1.29850586^{-10}
\end{aligned}
$$

## 76. Strength of Electric Field

$\mathrm{E}=\frac{\mathrm{Q}}{4 \pi \varepsilon_{0} r^{2}}\left(=9 \times 10^{9} \frac{\mathrm{Q}}{r^{2}}\right) \quad(r>0)$
Q is quantity of electricity, $r$ is distance from electric charge
-This equation is used to determine the strength of an electric field at a given distance from the electric charge when the quantity of the electricity is known.

## Example

Determine the strength of an electric field at a point which is $r=20 \mathrm{~cm}$ distant from the electric charge when the quantity of the electricity is $\mathrm{Q}=3 \times 10^{-7} \mathrm{C}$,

Operation

| $\triangle A C 76$ AMA <br> (Recall strength of electric field.) | $\begin{array}{ll} \mathrm{E}=\mathrm{Q} / 4 \pi \mathrm{E} \mathrm{r}^{2} \\ \mathrm{Q} \text { ? } & 0 \\ \hline \end{array}$ |
| :---: | :---: |
| 3 EXP 7 気 <br> (Enter value for Q.) | $\begin{aligned} & \mathrm{E}=\mathrm{Q} / 4 \pi \mathrm{mor} \\ & \mathrm{r} ? \end{aligned}$ |
| $0.2 \text { Ex] }$ <br> (Enter value for $r$.) | $\begin{aligned} & \mathrm{E}=\mathrm{Q} / 4 \pi \mathrm{Ear} \\ & \mathrm{E}=67406.6384 \end{aligned}$ |
| ENG | $\begin{aligned} & E=Q / 4 \pi E 0 r^{2} \\ & E=67.4066384^{\circ 3} \end{aligned}$ |

Display

$$
E=Q / 4 \pi E 0 r 2
$$

$$
Q ?
$$

$\stackrel{8}{0}$.

$$
\begin{aligned}
& \mathrm{E}=\mathrm{Q} / 4 \pi \mathbf{\pi} \boldsymbol{r} \mathrm{r} \\
& \mathrm{r} ?
\end{aligned}
$$

$$
E=Q / 4 \pi \varepsilon \operatorname{lor}^{2}
$$

$$
E=674066384
$$

$$
\begin{aligned}
& E=Q / 4 \pi E \circ r z \\
& E=67.4066384^{\circ 03}
\end{aligned}
$$

$E$ is electric field, D is electric flux density
-This equation is used to determine the electric energy in a system which includes an electric substance when the strength of the electric field and the electric flux density are known.

## Example

Determine the energy density stored in an electrostatic field when the electric field with an electric flux density of $\mathrm{D}=8 \times 10^{-5} \mathrm{C} / \mathrm{m}^{2}$ in an electric field of $\mathrm{E}=200 \mathrm{~V} / \mathrm{m}$.

## Operation

Display

## AC 77 FMA

(Recall energy density stored in electrostatic field (1).)
200 EXE
(Enter value for E .)

8 EXP -1 5 Ex
(Enter value for D.)

## $\omega=E D / 2$

$$
E ? \quad 0 .
$$

$$
w=E \square / 2
$$

$\square$ ?
0
$\mathrm{w}=\mathrm{ED} / 2$
$\mathrm{l}=$
${ }^{\mathrm{m}} \mathrm{-}^{-03}$

## 78.

## Energy Density Stored in <br> Electrostatic Field (2)

$\mathrm{W}=\frac{1}{2} \varepsilon \mathrm{E}^{2} \quad(\varepsilon, \mathrm{E}>0)$
E is electric field; $\varepsilon$ is permittivity
-This equation is used to determine the electric energy in a system which includes an electric substance when permittivity of the dielectric substance and the strength of the electric field are known.

## Example

Determine the electric energy density for mica with permittivity of $\varepsilon=6.2 \times 10^{-11}$ $\mathrm{F} / \mathrm{m}$ within an electric field of $\mathrm{E}=200 \mathrm{~V} / \mathrm{m}$.

Operation
$\triangle \mathrm{AC} 78$ MMA
(Recall energy density stored in electrostatic field (2).)
6.2 EXP) ( -911 EXE
(Enter value for $\varepsilon$.)

200 EXE
(Enter value for E .)

Display

| $\downarrow=\varepsilon E^{2} / 2$ |  |
| :---: | :---: |
| $\varepsilon ?$ | 0. |


| $W=\varepsilon E 2 / 2$ |  |
| :---: | :---: |
| $E ?$ | 0. |

$$
\omega=\varepsilon E 2 / 2
$$

い $1.24^{\text {m }}-06$
79. Capacity (1)
$\mathrm{W}=\frac{1}{2} \mathrm{CV}^{2}$
$C$ is electrostatic capacity, $V$ is electric potential difference

- This equation is used to determine the energy stored in a conductor when the electrostatic capacity and electric potential difference of the conductor are known.


## Example

Determine the energy stored in a conductor with an electrostatic capacity of $\mathrm{C}=6 \mu \mathrm{~F}$, and an electric potential difference of $\mathrm{V}=700 \mathrm{~V}$.

## Operation

Display

| AC 79 MMA <br> (Recall energy stored in electrostatic capacity (1).) | $W=C \cup 2 / 2$ |  |
| :---: | :---: | :---: |
|  | C? | 0. |
| 6 EXP 6 ExE <br> (Enter value for C.) | $\begin{aligned} & W=C U 2 / 2 \\ & U ? \end{aligned}$ | $\square_{0}^{0}$ |
| $\begin{aligned} & 700 \text { ExE } \\ & \text { (Enter value for V.) } \end{aligned}$ | $\begin{aligned} & W=C \cup 2 / 2 \\ & W= \end{aligned}$ | $147$ |

## 80. Energy Stored in Electrostatic Capacity (2)

$$
\begin{equation*}
W=\frac{1}{2} \frac{Q^{2}}{C} \tag{C>0}
\end{equation*}
$$

C is electrostatic capacity, Q is quantity of electricity
-This equation is used to determine the energy stored in a conductor when the quantity of electricity stored in the conductor and the electrostatic capacity are known.

## Example

Determine the energy stored in a conductor for a quantity of electricity $Q=4 \times 10^{-7} \mathrm{C}$ and electrostatic capacity of $\mathrm{C}=1.6 \mu \mathrm{~F}$.

Operation
Display

## $A C 80$ EMLA

(Recall energy stored in electrostatic capacity (2).)

| W二Q2/2C | Q |
| :--- | :--- |
| $Q ?$ | 0. |

4 EXP $-(-1) 7$ EXE
(Enter value for Q.)

(Enter value for C .)
$\begin{array}{ll}W=Q 2 / 2 C & \\ C ? & 0 .\end{array}$
$W=Q 2 / 2 C$
$W=$
$5^{\mathrm{m}}-08$

## 81. Energy Stored in Electrostatic Capacity (3)

$\mathrm{W}=\frac{1}{2} \mathrm{QV}$
Q is capacity of electricity, V is potential difference
-This equation is used to determine the energy stored in a conductor when the capacity of electricity stored in the conductor and the potential difference are known.

## Example

Determine the energy stored in a conductor with for a capacity of electricity $\mathrm{Q}=1.2 \times 10^{-5} \mathrm{C}$ and potential difference of $\mathrm{V}=70 \mathrm{~V}$.

Operation
Display

| AC81 Mm |
| :---: |
| (Recall energy store capacity (3).) |
| 1.2 EXP ( -9$) 5$ EXE (Enter value for Q.) |
| $\begin{aligned} & 70 \text { 欧 } \\ & \text { (Enter value. for } \mathrm{V} \text {.) } \end{aligned}$ |


| $W=Q U / 2$ | 0 |
| :--- | :---: |
| $Q ?$ | 0 |
| $W=Q U / 2$ | 0 |
| $U ?$ | 0 |
| $W=Q U / 2$  <br> $W=$ $42^{-04}$ |  |

## 82. Force Exerting on Magnetic Pole $\mathrm{F}=m \mathrm{H} \quad(m, \mathrm{H}>0)$ $m$ is magnetic charge, $H$ is magnetic field strength

- This equation is used to determine the strength of a magnetic pole when the magnetic charge and magnetic field strength are known.


## Example

Determine the strength of a magnetic pole for a magnetic charge of $m=2$ ampereturn $/ \mathrm{m}$, and a magnetic field strength of $\mathrm{H}=3 \times 10^{-3} \mathrm{~Wb}$ (Weber).

## Operation

Display

## AC82 82 MIA

(Recall force exerting on magnetic pole.)

2 ExE
(Enter value for $m$.)

3 EXP $-1-2$ EXE
(Enter value for H .)


$$
\mathrm{F}=\mathrm{mH}
$$

$H^{\text {? }}$
$\stackrel{\square}{0}$

$$
\begin{array}{lll}
\hline \mathrm{F}=\mathrm{mH} & \cdot \\
\mathrm{~F}= & 6-03 \\
\hline
\end{array}
$$

# 83. Magnetic Energy of Inductance <br> $\mathrm{W}=\frac{1}{2} \mathrm{LL}^{2}$ <br> ( $\mathrm{L}, \mathrm{I}>0$ ) 

$L$ is self-inductance of coil, I is current flowing in coil
-This equation is used to determine the electromagnetic energy stored in a coil when the self-inductance of the coil and current are known.

## Example

Determine the electromagnetic energy stored in a coil when a current of $\mathrm{I}=6 \mathrm{~A}$ flows to a coil with a self-inductance of $\mathrm{L}=0.07 \mathrm{H}$.

AC83 (FMA)
(Recall magnetic energy of inductance.)
0.07 ExE
(Enter value for L.)

6 EXE
(Enter value for I.)

W=LI $2 / 2$
L?
0.
$W=$ LI $2 / 2$
I?
W=LI $2 / 2$
$W=$
$1.26^{\circ}$

## 84. Electrostatic Capacity between Parallel Plates <br> $\mathrm{C}=\frac{\varepsilon \mathrm{S}}{d}$ <br> (S. $d>0$ )

$\varepsilon$ is dielectric constant, S is area of parallel plates, $d$ is distance between parallel plates

- This equation is used to determine the electrostatic capacity stored between parallel plates when the dielectric constant of the material used in the plates, the area of parallel plates and the distance between the plates are known.


## Example

Determine the electrostatic capacity stored between parallel plates with a dielectric constant of 2 , when the area of the plates is $S=50 \mathrm{~cm}^{2}\left(50 \times 10^{-4} \mathrm{~m}^{2}\right)$, and the distance between the two plates is $d=2 \mathrm{~cm}\left(2 \times 10^{-2} \mathrm{~m}\right)$.

## Operation

Display

AC84 FMLA
(Recall electrostatic capacity between parallel plates.)
2 APMA [0NHE EOD EXE
(Enter value for $\varepsilon$.)

50. ExP ( -9$) 4$ EXE
(Enter value for S .)
$\therefore$
2 EXP $-(-1) 2 E$
(Enter value for $d$.)

> | $C=\varepsilon S / d$ | 0 |
| :--- | :--- |
| $d ?$ | 0. |

$$
\begin{aligned}
& \mathrm{C}=\varepsilon S / \mathrm{d} \\
& \mathrm{C}=4.42709390 \mathrm{~g}_{-12}
\end{aligned}
$$

## 85. Impedance in LR Series Circuit

$$
\mathrm{Z}=\sqrt{\mathrm{R}^{2}+(2 \pi f \mathrm{~L})^{2}} \quad\left(=\sqrt{\mathrm{R}^{2}+\omega^{2} \mathrm{~L}^{2}}\right) \quad(\mathrm{R}, f, \mathrm{~L}>0)
$$

R is resistance, $f$ is frequency, L is inductance
-This equation is used to determine the impedance of an LR series circuit when the frequency, resistance and inductance are known.

## Example

Determine the impedance for an LR series circuit with resistance of $\mathrm{R}=8$ ohms and inductance of $\mathrm{L}=0.05 \mathrm{H}$, for a frequency of $f=50 \mathrm{~Hz}$.

Operation
Display
AC85 EMLA
(Recall impedance in LR series circuit.)
8 EXE
(Enter value for R.)
50 EXE
(Enter value for $f$. )
O.O5 EXE
(Enter value for L.)


| $Z=\sqrt{ }(R 2+(2 \pi f L) ~$ |
| :---: |
| $f ?$ |


| $Z=\sqrt{ }\left(R^{2}+(2 \pi f L) 2\right.$ |
| :---: |
| $L ?$ |

$$
\begin{gathered}
Z=\sqrt{ }(R 2+(2 \pi f L))^{2} \\
Z=17.62782204
\end{gathered}
$$

## 86. Impedance in RC Series Circuit

 $\mathrm{Z}=\sqrt{\mathrm{R}^{2}+\frac{1}{(2 \pi f \mathrm{C})^{2}}}\left(=\sqrt{\mathrm{R}^{2}+\frac{1}{\omega^{2} \mathrm{C}^{2}}}\right)$R is resistance, $f$ is frequency, C is electric capacity

- This equation is used to determine the impedance of an RC series circuit of frequency $f$ when the resistance and electric capacity are known.


## Example

Determine the impedance for an RC series circuit with resistance of $R=12$ ohms and electric capacity of $\mathrm{C}=30 \mu \mathrm{~F}\left(30 \times 10^{-6} \mathrm{~F}\right)$, for a frequency of $f=60 \mathrm{~Hz}$.

## Operation

Display

## AC86 8 AMLA

(Recall impedance in RC series circuit.)

12 ExE
(Enter value for R.)

60 [XE
(Enter value for $f$.)

30 ExP $(-9) 6$ EXE
(Enter value for C.)


## 87. Composite Reactance in LC Series Circuit

$$
\mathrm{X}=2 \pi f \mathrm{~L}-\frac{1}{2 \pi f \mathrm{C}} \quad\left(=\omega \mathrm{L}-\frac{1}{\omega \mathrm{C}}=\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{c}}\right) \quad(f, \mathrm{~L}, \mathrm{C}>0)
$$

$f$ is frequency, L is inductance, C is electric capacity
-This equation is used to determine the reactance of an LC series circuit of frequency $f$ when the inductance and electric capacity are known.

## Example

Determine the reactance for an LC series circuit with inductance of $\mathrm{L}=0.2 \mathrm{H}$ and electric capacity of $\mathrm{C}=70 \mu \mathrm{~F}\left(70 \times 10^{-6} \mathrm{~F}\right)$, for a frequency of $f=50 \mathrm{~Hz}$.

## Operation

Display
AC87 (RMLA
(Recall composite reactance in LTC series circuit.)

50 ExE
(Enter value for $f$.)
0.2 这E
(Enter value for L.)

70 EXP 6 [ 6 ExE
(Enter value for C.)

$$
\begin{aligned}
& X=2 \pi f L-1 / 2 \pi f C \\
& f ? \\
& X=2 \pi f L-1 / 2 \pi f C \\
& L ?
\end{aligned}
$$

$$
\begin{gathered}
x=2 \pi f L-1 / 2 \pi f C_{\mathrm{m}} \\
C ?
\end{gathered}
$$

$$
X=2 \pi f L-1 / 2 \pi f C_{m}
$$

$$
x=17.35901219
$$

## 88. Impedance in LRC Series Circuit

$\mathrm{Z}=\sqrt{\mathrm{R}^{2}+\left(2 \pi f \mathrm{~L}-\frac{1}{2 \pi f \mathrm{C}}\right)^{2}} \cdot\left(=\sqrt{\mathrm{R}^{2}+\left(\omega \mathrm{L}-\frac{1}{\omega \mathrm{C}}\right)}\right)$
R is resistance, $f$ is frequency, L is inductance,
$(\mathrm{R}, ~ f, \mathrm{~L}, \mathrm{C}>0)$
C is electric capacity
-This equation is used to determine the impedance of an LRC series circuit of frequency $f$ when the resistance, inductance, and electric capacity are known.

## Example

Determine the impedance for an LRC series circuit with resistance of $R=2$ ohms, inductance of $\mathrm{L}=0.08 \mathrm{H}$, and electric capacity of $\mathrm{C}=30 \mu \mathrm{~F}\left(30 \times 10^{-6} \mathrm{~F}\right)$, for a frequency of $f=60 \mathrm{~Hz}$.

Operation

AC88 (AMLA
(Recall impedance in LRC series circuit.)

2 気
(Enter value for R.)

60 ExE
(Enter value for $f$.)
0.08 EXE
(Enter value for L.)

30 EXP 6 EXE
(Enter value for C .)

Display
$Z=\sqrt{(R 2+(2 \pi f L-1}-$
$R ?$
$Z=\sqrt{C R 2+(2 \pi f L-1}$
$f ?$

$$
\begin{gathered}
Z=\sqrt{Z}(R 2+(2 \pi f L-1) \\
L ?
\end{gathered}
$$

$$
\begin{array}{cl}
Z=\sqrt{ }(R 2+(2 \pi f L-1 \\
C ?
\end{array}
$$

$$
\begin{aligned}
& Z=\sqrt{ }(R 2+(2 \pi f L-1 \\
& Z=58.29444204
\end{aligned}
$$

## 89. Impedance in LRC Parallel Circuit



R is resistance, $f$ is frequency, L is inductance, C is electric capacity
-This equation is used to determine the impedance of an LRC parallel circuit of frequency $f$ when the resistance, inductance, and electric capacity are known.

## Example

Determine the impedance for an LRC parallel circuit with resistance of $R=7$ ohms, inductance of $\mathrm{L}=0.05 \mathrm{H}$, and electric capacity of $\mathrm{C}=9 \mu \mathrm{~F}\left(9 \times 10^{-6} \mathrm{~F}\right)$, for a frequency of $f=60 \mathrm{~Hz}$.


7 ExE
(Enter value for R,)
60 ExE
(Enter value for $f$.)
9 Exp $6 \mathbb{E x E}$
(Enter value for C.)
0.05 EXE
(Enter value for L.)


# 90. Series Resonance Circuit <br> $Z_{\mathrm{R}}=\mathrm{R}, ~ \mathrm{Z}_{\mathrm{x}}=2 \pi f \mathrm{~L}-\frac{1}{2 \pi f \mathrm{C}} . \quad(\mathrm{R}, f, \mathrm{~L}, \mathrm{C}, ~ Z>0)$ 

R is resistance, $f$ is frequency, L is inductance, C is electrostatic capacity, $Z$ is impedance
-This equation is used to determine the impedance and the impedance of a series resonance circuit when the resistance, inductance, electrostatic capacity and frequency are known.

## Example

Determine impedance $Z_{R}$ and $Z x$ for resistance $R=1 \mathrm{ohm}$, electrostatic capacity $\mathrm{C}=15 \mu \mathrm{~F}\left(15 \times 10^{-6} \mathrm{~F}\right)$, coil inductance $\mathrm{L}=30 \mathrm{mH}\left(30 \times 10^{-3} \mathrm{H}\right)$, and frequency $f=350 \mathrm{~Hz}$.

Operation
Display

## $\triangle 90$ FMLA

(Recall series resonance circuit.)

1 ExE
(Enter value for R.)

ExE

350 ExE
(Enter value for $f$.)
30 EXP $(-9) 3$ EXE
(Enter value for L.)
15 EXP ( $Q$ ) 6 EXE (Enter value for C .)
ZR=R
R?
0



$Z x=2 \pi f L-1 / 2 \pi f C$ C?
0.

$$
\begin{aligned}
& Z X=2 \pi f L-1 / 2 \pi f C \\
& Z X=35.65821847
\end{aligned}
$$

# 91. Parallel Resonance Circuit 

$\mathrm{Y}_{\mathrm{R}}=1 / \mathrm{R}, ~ \mathrm{Y}_{\mathrm{x}}=2 \pi f \mathrm{C}-\frac{1}{2 \pi f \mathrm{~L}}$
R is resistance, $f$ is frequency, C is electrostatic capacity, L is inductance, Y is admittance

- This equation is used to determine the admittance (inverse of impedance) and the admittance of a parallel resonance circuit when the resistance; frequency, electrostatic capacity, and inductance are known.


## Example

Determine admittance $Y_{R}$ and $Y_{x}$ for resistance $R=200$ ohms, inductance $\mathrm{L}=50 \mathrm{mH}\left(50 \times 10^{-3} \mathrm{H}\right)$, electrostatic capacity $\mathrm{C}=1 \mu \mathrm{~F}\left(1 \times 10^{-6} \mathrm{~F}\right)$, and frequency $f=1 \mathrm{kHz}\left(1 \times 10^{3} \mathrm{~Hz}\right)$.

## Operation

## Display

## $\triangle 91$ EMLA

(Recall. parallei resonance circuit.)

200 坔E
(Enter value for R.)
EXE]

| $Y R=1 / R$ |  |
| :--- | :--- |
| $R ?$ | 0 |


| $Y R=1 / R$ |  |  |
| :--- | :--- | :--- |
|  |  |  |
| $Y R=$ | $\therefore$ | 5.03 |

$$
\left[\begin{array}{cc}
Y X=2 \pi f C-1 / 2 \pi f L \\
f ? & 0 .
\end{array}\right.
$$

1 EXP 3 [ EXE
(Enter value for $f$.)
1 ExP 6 EXE
(Enter value for C.)

50 EXP ( -1 EXE
(Enter value for L.)


| $Y \times=2 \pi f C-1 / 2 \pi f L$ |
| :---: |
| $L ?$ |

[^0]
## 92. Power Factor

$\cos \varphi=\frac{\mathrm{R}}{\mathrm{Z}}\left(=\frac{\mathrm{P}}{\mathrm{EI}}\right) . \quad(\mathrm{R}>0)$
R is resistance, Z is impedance
-This equation is. used to determine the power factor and lag angle* for an $A C$ circuit when its resistance and impedance are known.

* lag angle: expresses phase delay of electric current in relation to electromotive force.


## Example

Determine the lag angle for an $A C$ circuit with a resistance of $R=12$ ohms and impedance of $Z=16$ ohms.

## Operation

Display
M00E 4 EXE (Degree)
AC92 FMA
(Recall power factor.)

12 ExE
(Enter value for R.)

## Ф=cos-1 (R/Z) <br> R? <br> 0.

$$
\begin{array}{cc}
\phi=\cos -1 & (R / Z) \\
Z ? & 0
\end{array}
$$

中= CDS-1 (R/Z)
$\phi=41.40962211^{\text {² }}$

16 ExE
(Enter value for Z .)
-This equation is used to determine the Joule heat generated by a conductor when the resistance of the conductor and the current are known.

## Example

Determine the Joule heat generated when an electric current of $\mathrm{I}=20$ amperes flows through a copper wire of resistance $\mathrm{R}=1.7 \times 10^{-4}$ ohms.

Operation

## Display

## AC93 (mma

(Recall Joule's law (1).)
1.7 EXP 4 EXE
(Enter value for R.)

20 ExE
(Enter value for 1 .)

| $\begin{gathered} \mathrm{P}=\mathrm{RI} \mathrm{I}^{2} \\ \mathrm{R} ? \end{gathered}$ | $\stackrel{\square}{0}$ |
| :---: | :---: |
| $\mathrm{P}=\mathrm{RI}$ ? |  |
| I? | 0. |
| $\mathrm{P}=\mathrm{RII}$ |  |
| $\mathrm{P}=$ | 0.068 |

## 94. Joule's Law (2)

 $\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}} \quad(\mathrm{R}>0)$V is electric potential difference, R is resistance
-This equation is used to determine the Joule heat generated by a conductor when its resistance and electric potential difference are known.

## Example

Determine the Joule heat generated when an electric potential difference of $V=100 \mathrm{~V}$ is applied to a copper wire of resistance $\mathrm{R}=1.1 \times 10^{-2}$ ohms.

## Operation

Display

| AC94 EMLA <br> (Recall Joule's law (2).) | $\begin{array}{ll} P=U 2 / R & \\ U ? & 0 \end{array}$ |  |
| :---: | :---: | :---: |
|  |  |  |
| 100 EXE <br> (Enter value for V.) | $\begin{aligned} & P=\cup 2 / R \\ & R ? \end{aligned}$ | 0. |
|  (Enter value for R . | $\begin{array}{r} P=U 2 / R \\ P=909 \end{array}$ |  |

## 95. Induced Electromotive Force

$\mathrm{V}_{e}=v \mathrm{~B} \ell \quad(u, \mathrm{~B}, \ell>0)$
$v$ is motive velocity of conductor, B is magnetic flux density, $\ell$ is length of conductor
-This equation is used to determine induced electromotive force when the velocity, magnetic flux of the magnetic field and conductor length are known when the conductor is moved within a magnetic field.

## Example

Determine the electric potential difference generated at both ends of a conductor of length $\ell=1 \mathrm{~m}$ when the conductor is moved through a magnetic field of $\mathrm{B}=0.2 \times 10^{-4} \frac{\mathrm{~N}}{\mathrm{Am}}$ at a speed of $v=12 \mathrm{~m} / \mathrm{s}$.

AC95 FMLA
(Recall induced electromotive force.)

12 Exe
(Enter value for $\nu$.)
0.2 EXP -94 EXE
(Enter value for B.)
1 这效
(Enter value for l .)

Ve=vBl
$v$ ?
0
Ue=vBl
B?
0

> | Ve $=$ VBI |  |
| :---: | :---: |
| $1 ?$ | 0. |

$\mathrm{Ve}=\mathrm{VBl}$
Ue:
$2.4^{\text {® }} 0.4$

## 96. Voltage Gain

$$
\mathrm{A}_{v}[d \mathrm{~B}]=20 \log \left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}\right) \quad(d \mathrm{~B}] \quad\left(\mathrm{V}_{2} / \mathrm{V}_{1}>0\right)
$$

$V_{1}$ is input voltage, $V_{2}$ is output voltage
-This equation is used to determine the voltage gain of an amplifier circuit when the input voltage and output voltage are known.

## Example

Determine the voltage gain for an input voltage of $V_{1}=15 \mathrm{~V}$ and an output voltage of $\mathrm{V}_{2}=36 \mathrm{~V}$.

Operation
Display

> | $A V=20109$ | $(U 2 / U$ |
| :--- | :---: |
| $U 2 ?$ | 0 |

$\begin{array}{lr}\mathrm{AV}=20109(U 2 / U \\ U_{1} ? & 0\end{array}$ $\mathrm{AV}=20109 \quad(\mathrm{~V} / \mathrm{V}$
$\mathrm{AV}=7.604224834$

## 97. Current Gain

$$
\mathrm{A}_{i}[d \mathrm{~B}]=20 \log _{10}\left(\frac{\mathrm{I}_{2}}{\mathrm{I}_{1}}\right)[d \mathrm{~B}] \quad\left(\mathrm{I}_{2}, \mathrm{I}_{1}>0\right)
$$

$I_{1}$ is input current, $I_{2}$ is output current
-This equation is used to determine the current gain: of an amplifier circuit when the input current and output current are known.

## Example

Determine the current gain for an input current of $I_{1}=15 \mathrm{~mA}$ and an output current of $\mathrm{I}_{2}=60 \mathrm{~mA}$.

Operation
Display

AC97 FMLA<br>(Recall current gain.)<br>60 ExE<br>(Enter value for $\mathrm{I}_{2}$.)<br>15 ExE<br>(Enter value for $\mathrm{I}_{1}$.)

| $\mathrm{Ai}=2 \boxtimes 109$ | $(\mathrm{I} 2 / \mathrm{I}$ |
| :--- | :---: |
| I 2 ? | $\ddots$ |


| $\mathrm{Ai}=20109$ | $(\mathrm{I} 2 / \mathrm{I}$ |
| :--- | :---: |
| $\mathrm{I} 1 ?$ | 0 |

$\mathrm{Ai}=20109(\mathrm{I} 2 / \mathrm{I}$
$\mathrm{Ai}=12.04119983$.

## 98. Power Gain

$\mathrm{A}_{p}[d \mathrm{~B}]=10 \log _{10}\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)[d \mathrm{~B}] \quad\left(\mathrm{P}_{2} / \mathrm{P}_{1}>0\right)$
$P_{1}$ is input power, $P_{2}$ is output power
-This equation is used to determine the power gain of an amplifier circuit when the input power and output power are known.

## Example

Determine the power gain for an input power of $P_{1}=40 \mathrm{~mW}\left(40 \times 10^{-3} \mathrm{~W}\right)$ and an output power of $\mathrm{P}_{2}=5 \mathrm{~W}$.

Display

| $\frac{\text { AC9 } 98 \text { EMLR }}{\text { (Recall power gain.) }}$ | $\begin{array}{lc} \mathrm{AP}=10109 & (\mathrm{P} 2 / \mathrm{P} \\ \mathrm{P}_{2} ? & 0 \end{array}$ |
| :---: | :---: |
| $\begin{aligned} & 5[\text { Exe] } \\ & \text { (Enter value for } P_{2} \text {.) } \end{aligned}$ | $\begin{array}{cc} \hline \mathrm{AP}=10109 & \left(\mathrm{P}_{2} / \mathrm{P}\right. \\ \mathrm{P}_{1} ? & 0 . \\ \hline \end{array}$ |
| 40 EXP -3 远 <br> (Enter value for $P_{1 .}$ ) | $\begin{aligned} & \mathrm{AP}=10109 \quad \mathrm{P}=\mathrm{P} / \mathrm{P} \\ & \mathrm{AP}=20.96910013 \end{aligned}$ |

99. $\Delta \rightarrow Y$ conversion

$$
\mathrm{R}_{4}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}}, \mathrm{R}_{5}=\frac{\mathrm{R}_{2} \mathrm{R}_{3}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}}, \quad \mathrm{R}_{6}=\frac{\mathrm{R}_{3} \mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}}\left(\begin{array}{l}
\left.\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}>0\right)
\end{array}\right.
$$

-This equation is used to convert from a $\Delta$ connection to a Y connection.

## Example

Determine the $\mathrm{R}_{4}, \mathrm{R}_{5}, \mathrm{R}_{6}$ values for a Y connection based upon a $\Delta$ connection of $\mathrm{R}_{1}=35$ ohms, $\mathrm{R}_{2}=90$ ohms, $\mathrm{R}_{3}=50$ ohms.

AC99
(Recall $\Delta \rightarrow Y$ conversion.)

35 ExE
(Enter value for $\mathrm{R}_{1}$.)

90 EXE
(Enter value for $\mathrm{R}_{2}$.)

50 ExE
(Enter value for $\mathrm{R}_{3}$.)

ExE]

Exx

| $R 4=R 1 R 2 /\left(R 1+R_{2}\right.$ |  |
| :--- | :--- |
| $R 1 ?$ | 0. |


| R4=R1R2ノ(R1+R2 |
| :--- |
| R2? |

$\mathrm{R} 4=\mathrm{R} 1 \mathrm{R} 2 /(\mathrm{R} 1+\mathrm{R} \mathrm{Z}$
$\mathrm{R} 3 ?$

$$
\left.\begin{array}{|cc|}
R 4=R 1 R 2 /(R 1+R 2 \\
R 4= & 18 .
\end{array}\right)
$$

$$
\begin{aligned}
& \text { R } 5=R 2 R 3 /\left(R 1+R_{2}\right. \\
& \text { R } 5=25.71428571
\end{aligned}
$$

## 100. $Y \rightarrow \Delta$ Conversion

$$
\begin{aligned}
& R_{1}=\frac{R_{4} R_{5}+R_{5} R_{6}+R_{6} R_{4}}{R_{5}} \\
& R_{2}=\frac{R_{4} R_{5}+R_{5} R_{6}+R_{6} R_{4}}{R_{6}} \\
& R_{3}=\frac{R_{4} R_{5}+R_{5} R_{6}+R_{6} R_{4}}{R_{4}} \quad\left(R_{4,} R_{5}, R_{6}>0\right)
\end{aligned}
$$

-This equation is used to convert from a Y connection to a $\Delta$ connection.

## Example

Determine the $\dot{R}_{1}, R_{2}, R_{3}$ values for a $\Delta$ connection based upon a $Y$ connection of $\mathrm{R}_{4}=20$ ohms, $\mathrm{R}_{5}=30$ ohms, $\mathrm{R}_{6}=50$ ohms.

## Operation

Display

```
AC1OO FMLA
(Recall Y }->\Delta\Delta\mathrm{ conversion.)
20 ExE
(Enter value for R4.)
```



```
(Enter value for Rs.)
50 EXE
(Enter value for R6.)
EXE
```

EXXE

| $\begin{aligned} & R 1=\left(R 4 R 5+R 5 R_{6}+\right. \\ & R 4 ? \end{aligned}$ |  |
| :---: | :---: |
|  |  |

R1 = (R4R5+R5R6+
R5? $\square$

R1 = (R4R5+R5R6+
R6?
0.
$R 1=\{R 4 R 5+R 5 R 6+$
$R 1=103.3333333$


| $\text { R } 3=$$155^{\circ} .$ |
| :---: |
|  |  |

## 101. Minimum Loss Matching

$R_{1}=Z_{0} \sqrt{1-\frac{Z_{1}}{Z_{0}}}, R_{2}=\frac{Z_{1}}{\sqrt{1-\frac{Z_{1}}{Z_{0}}}}$
$\mathrm{L}_{\text {min }}=20 \log \left(\sqrt{\frac{Z_{0}}{Z_{1}}}+\sqrt{\frac{Z_{0}}{Z_{1}}-1}\right)[d \mathrm{~B}] \quad\left(Z_{0} \geq Z_{1}>0\right)$
Z is impedance
-This equation is used to determine $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ to match $\mathrm{Z}_{0}$ and $\mathrm{Z}_{1}$ with minimum loss.

## Example

Determine the $R_{1}, R_{2}$ and Lmin when $Z_{0}=500$ ohms and $Z_{1}=200$ ohms.

## Operation

Display


```
20 ?
                                    0
```

|  |
| :---: |
| Z1? |

$$
\begin{array}{|l|}
\hline R 1=205(1-2 i / 200 \\
R 1=387.2983346
\end{array}
$$

$$
\mathrm{Rz}=21 / \sqrt{(1-21 / Z}
$$

$$
. R 2=258.1988897
$$

Lm=20109 ( $\sqrt{(20}$. $L m=8.961393328$

## 102.

## Change in Terminal Voltage of $\mathbf{R}$ in RC Series Circuit

$\mathrm{V}_{\mathrm{R}}=\mathrm{V} \cdot e^{-t / \mathrm{CR}}$
C is electrostatic capacity, R is resistance, $t$ is time
-This equation is used to determine voltage of terminal $\mathrm{V}_{\mathrm{R}}$ in an RC series circuit at time $t$ when the resistance and condenser capacity are known.

## Example

Determine the voltage at terminal R in an RC circuit at time $t=10$ when $\mathrm{R}=1 \mathrm{M}$ ohm ( $1 \times 10^{6}$ ohms), $\mathrm{C}=8 \mu \mathrm{~F}\left(8 \times 10^{-6} \mathrm{~F}\right.$ ), and $\mathrm{V}=90 \mathrm{~V}$.
(When $t=0$, voltage of terminal $\mathrm{V}_{\mathrm{R}}=0$ )
Operation
Display


> UR=UR(-t/CR)
> U? $\quad 0$.


UR=UR (-t/LR)
C?
0.

UR=UR $(-t / C R)$
$R ?$
UR=UE (-t/CR)
$U_{R}=25.78543172^{12}$

# 103. Probability Function of Binomial Distribution 

$$
\mathrm{P}_{x}={ }_{n} \mathrm{C}_{x} \mathrm{P}^{x}(1-\mathrm{P})^{n-x} \quad\left(\begin{array}{l}
0 \leqq \mathrm{P} \leqq \mathrm{I} \\
x=0,1, \cdots \cdots, n \\
n \text { is positive integer }
\end{array}\right)
$$

-This equation is used to determine the Px value for a phenomenon occurring in a binomial distribution when the probability $P$ of the phenomenon and the frequency of appearance are known.

## Example

Determine the P $x$ value for a die thrown $n=6$ times with the frequency of occurrence of one being $x=2$ times. ( $\mathrm{P}=1 / 6$ )

## Operation

Display
$\triangle A C 103$ FMLA
(Recall probability function of binomial distribution.)
6 ExE
(Enter value for $n$.)

2 EXE
(Enter value for $x$.)

176 殴
(Enter value for P.)


> | $P_{x}=n C \chi \times P x^{y} x \times(1$ |  |
| :---: | :---: |
| $x ?$ | 0. |

$$
\begin{array}{cc}
P x=n C x \times P X^{y} \dot{x} \times(1 \\
P ? & 0 .
\end{array}
$$

$\mathrm{P}_{x}=\mathrm{n} \Gamma \chi \times \mathrm{P}^{y} \chi \times(1$
$P x=0.200938786$

## 104. Probability Function of Poisson's Distribution

$\mathrm{P}_{\mathrm{x}}=\frac{\mu^{*} e^{-\mu}}{x!} \quad\binom{w=0,1,2, \cdots}{0<k}$
-This equation is used to determine the $\mathrm{P} x$ value for Poisson's distribution when the mean and variance (both $\mu$ ) are known and the frequency of occurrence is given.

## Example

Determine the Px value for Poisson's distribution when the mean and variance are $\mu=2$ and the frequency of occurrence is $x=1$.

## Operation

Display

## AC 104 EMLA

(Resall probability function of Poisson's distribution.)
2 EXE
(Enter value for $\mu$.)

1 EXE
(Enter value for $x$.)

$$
\begin{array}{cl}
P x=\left(\mu X^{y} \chi \times \mathbf{P}-\mu^{\mu}\right) / \\
\mu ?
\end{array}
$$

$$
\begin{aligned}
& P x=\left(\mu \chi^{y} x \times \mathbf{P}-\mu\right) / \\
& x ?
\end{aligned}
$$

$$
\begin{aligned}
& P x=\left(\mu \boldsymbol{\chi}^{y} \boldsymbol{x} \times \mathbf{P}-\mu\right) / \\
& P x=0.270670566
\end{aligned}
$$

## Probability Function of Geometric Distribution

$$
\mathrm{P}_{x}=(1-\mathrm{P})^{x} \mathrm{P} \quad\binom{x=0,1,2, \cdots \cdots}{0<\mathrm{P} \leqq 1}
$$

-This equation is used to determine the $\mathrm{P} x$ value for each appearance $x$ of a phenomenon when the probability P is known.

## Example

Determine the $P x$ value when $P=1 / 4$ and $x=2$.

## Operation

Display

## AC 105 EMLA <br> (Recall probability function of geometric distribution.)

1 \4 ExE
(Enter value for P.)

2 EXE
(Enter value for $x$.)

```
\(\mathrm{P} x=(1-\mathrm{P}) \chi^{y} \chi \times \mathrm{P}\)
P ?
    0.
```

$$
\begin{aligned}
& P x=(1-P) x^{y} x \times P \\
& x ?
\end{aligned}
$$

$$
\begin{aligned}
& P_{x}=(1-P) X^{y} \chi \times P \\
& P_{x}=0.140625
\end{aligned}
$$

## 106. Probability Function of Hypergeometric Distribution

$$
\mathrm{P}_{x}=\frac{{ }_{k} \mathrm{C}_{x} \cdot{ }_{N-k} \mathrm{C}_{n-x}}{{ }_{N} \mathrm{C}_{n}} \quad\left(\begin{array}{l}
0 \leqq k \leqq N, 0 \leqq n \leqq N \\
N, k \text { and } x \text { are } \\
\text { positive integers }
\end{array}\right)
$$

-This equation is used to determine probability when the values for $N, n, k$, and $x$ are known.

## Example

A total of $k=3$ defective articles can be expected within a total of $N=40$. Determine the probability of $x=1$ defective article being found among a sample of ten articles taken from the 40 .

Operation

AC 106 (TMA
(Recall probability function of hypergeometric distribution.)

3 EXE
(Enter value for $k$.)

1 EXE
(Enter value for $x$.)

40 ExE
(Enter value for $N$.)

10 EXE
(Enter value for $n$.)

Display

$$
\begin{array}{cl}
\mathrm{Px}=\mathrm{k} C x \times(\mathrm{N}-\mathrm{k}) \mathrm{C}_{1} \\
\mathrm{k} ?
\end{array}
$$


Px=k Cxx (N-k) C $C_{t}$
$\mathrm{P} x=0.4402834$

# 107. Probability Function of Exponential Distribution 

$$
\begin{array}{lll}
y=\lambda e^{-\lambda x} & x>0 \\
y=0 & x \leqq 0 & (\lambda>0)
\end{array}
$$

$\lambda$ is inverse of expected value
-This equation is used to determine a value for $y$ in relation to the $x$ value when the $\lambda$ value is known.

## Example

Determine the value of $y$ when the expected value is $2(\dot{\lambda}=1 / 2)$ and $x$ is 1 :

## Operation

Display

AC 107 FMA
'(Recall probability function of exponential dis: tribution.)

1 入2 唉
(Enter value for $\lambda$.)

$$
\begin{array}{ll}
y=\lambda e(-\lambda x) & \\
x ? & 0
\end{array}
$$

$$
\begin{aligned}
& y=\lambda e(-\lambda x) \\
& y=0.303265329
\end{aligned}
$$

$$
\begin{array}{ll}
y=\frac{1}{b-a} & a<x<b \\
y=0 & x \leqq a, x \leqq b
\end{array}
$$

-This equation is used to determine the value for the probability function of uniform distribution when $a$ and $b$ are known.

## Example

Determine the value for the probability function of uniform distribution when $a=1$ and $b=12$.

Operation

## $A C 108$ MM

(Recall probability function of uniform distribution.)
12 [xe
(Enter value for $b$.)

1 ExE
(Enter value for $a$.)

Display

$$
y=1 /(b-a)
$$

$b^{\text {? }}$
0.

$$
\begin{array}{cc}
y=1 /(b-a) & \\
a ? & 0 .
\end{array}
$$

$y=1 /(b-a)$
$y=0.09090909^{\circ}$

## 109. <br> Normal Distribution (Probability Density Function)

$$
y=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \quad(\sigma>0)
$$

-This equation is used to determine the value for normal distribution (probability density function) when the mean value of the distribution $\mu$ and variance $\sigma^{2}$ are given.

## Example

Determine the value for $x=35$ normal distribution (probability density function) when $\mu=33$ and $\sigma=4$.

## Operation

Display

AC 109 MLA
(Recall normal distribution (probability density function).)

4] [EXE
(Enter value for $\sigma$.)

35 ExE
(Enter value for $x$.)

33 Exe
(Enter value for $\mu$.)

$$
\begin{gathered}
y=(1 /(\sqrt{ }(2 \pi) \times \delta) \\
\sigma ?
\end{gathered}
$$

$$
\begin{array}{|cc|}
\hline y=(1 /(\sqrt{ }(2 \pi) \times \sigma) \\
x ? & 0 . \\
\hline
\end{array}
$$

$$
\begin{gathered}
y=[1 /(\sqrt{ }(2 \pi) \times \delta) \\
\mu ?
\end{gathered}
$$

$$
\begin{gathered}
y=(1 /(\sqrt{ }(2 \pi) \times \delta) \\
y=0.088016331
\end{gathered}
$$

## 110. Normal Probability Function

$$
\mathrm{P}(x)=\frac{1}{\sqrt{2 \pi}} \int_{|x|}^{\infty} e^{-\frac{\mu^{2}}{2}} d t \quad \quad\left(0 \leq x<1 \times 10^{5 x}\right)
$$

$$
Q(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{|x|} e^{-\frac{t}{2}} d t
$$ (Hastings' best estimate formula.)

-This equation is used to determine the normal probability function $\mathrm{P}(x), \mathrm{Q}(x)$ when a value for $x$ is known.

- Since this is an approximation formula, precision may be questionable.


## Example

Determine the normal probability function $\mathrm{P}(x)$ and $\mathrm{Q}(x)$ when $x=3$.

## Operation

AC 110 FMLA
(Recall normal probability function.)

3EXE
(Enter value for $x$.)

EEEE

> | $P(x)$ | $Q(x)$ |  |
| :---: | :---: | :---: |
| $x ?$ |  | 0. |

$P(x) \quad Q(x)$
$t=0.589996363$

$$
\begin{array}{|l|}
\hline P(x) \quad Q(x) \\
P x=1.349968527^{-03}
\end{array}
$$

EXE

$$
y=\frac{x-x_{\mathrm{A}}}{\sigma} \times 10+50 \quad \because(\sigma>0)
$$

$x_{A}$ is mean，$\sigma$ is standard deviation
－This equation is used to determine the deviation when the mean and standard deviation are known．

## Example

Determine the deviation from $x=65.1$ when the mean is $x_{A}=63.8$ and the stan－ dard deviation is $\sigma=4.2$ ．

## Operation

Display
$\triangle \mathrm{AC} 111$ EMLA
（Recall deviation．）

（Enter value for $x$ ．）
63.8 医E
（Enter value for $x A$ ．）
4.2 ExE
（Enter value for $\sigma$ ．）

$$
\begin{aligned}
& \begin{array}{cc}
y=(\chi-\chi 月) \times 10 / \sigma^{+}+ \\
\sigma_{0} ? & 0 .
\end{array} \\
& y=(x-\chi \text { A }) \times 10 / \sigma_{\text {© }}+ \\
& y=53.0952381
\end{aligned}
$$

## 112. Tension and Compression <br> $\lambda=\frac{\sigma}{\mathrm{E}} \ell \quad(\mathrm{E}, \sigma, \ell>0)$

$\sigma$ is vertical stress, $l$ is original length, $E$ is Young's modulus
-This equation is used to determine the stretch or compression when the vertical stress, Young's modulus, and the original length of the material are known. The vertical stress is $\sigma=\frac{W}{A}$ for vertical load W and A is the original cross sectional area of the material.

## Example

Determine the stretch or compression volume when length $\ell=420 \mathrm{~mm}$, vertical stress $\sigma=4.0 \mathrm{kgf} / \mathrm{mm}^{2}$, and Young's modulus $\mathrm{E}=1.8 \times 10^{4} \mathrm{kgf} / \mathrm{mm}^{2}$.

## Operation

Display

## AC 112 [ FMLA

(Recall tension and compression.)

4EXE
(Enter value for $\sigma$.)

$$
\begin{array}{cc}
\hline \lambda=\sigma l / E & \\
\sigma ? & 0 .
\end{array}
$$

$$
\begin{array}{ccc}
\hline \lambda=\sigma \mathrm{l} / \mathrm{E} & & \\
1 ? & 0 \\
\hline
\end{array}
$$

## 420 匡E

(Enter value for $\ell$. )

$$
\begin{array}{ll}
\hline \lambda=\sigma 1 / E & \\
E ? & 0 .
\end{array}
$$

### 1.8 ExP 4ExE

(Enter value for E .)

$$
\begin{aligned}
\lambda & =\delta 1 / E \\
\lambda & =0.093333333
\end{aligned}
$$

## 113.

$\tau=\frac{\mathrm{P}}{\mathrm{A}}$
(A. $\mathrm{P}>0$ )
$P$ is shear load; $A$ is cross sectional area receiving the shear
-This equation is used to determine the shearing stress when the shear load and cross sectional area receiving the shear are known.

## Example

Determine the shearing stress when the shear load is $\mathrm{P}=90 \mathrm{~kg}$ and the cross sectional area receiving the shear is $\mathrm{A}=16 \mathrm{~mm}^{2}$.

## Operation

Display
AC. 113 ( $\operatorname{mMLA}$
(Recall shearing stress (1).)
90 EXE
(Enter value for P.)
16 EXE
(Enter value for A.)


$$
\begin{array}{ccc}
\hline \tau=P / A \\
A ? & 0 . \\
0
\end{array}
$$

$$
\begin{array}{cc}
\tau=P / A & \\
\tau= & 5.625
\end{array}
$$

## 114.

Shearing Stress (2)

$$
\tau=\mathrm{G} \gamma \quad(\mathrm{G}, \gamma>0)
$$

G is transversability coefficient, $\gamma$ is shearing strain
-This equation is used to determine the shearing stress when the transversability coefficient and the shearing strain are known.

## Example

Determine the shearing stress when the shearing strain is $\gamma=0.0007$ and the transversability coefficient is $\mathrm{G}=1.1 \times 10^{4} \mathrm{kgf} / \mathrm{mm}^{2}$.

## AC $1: 14$ FMLA <br> (Recall shearing stress (2).)

$1.1 \mathrm{EXP} 4 \sqrt{\mathrm{EXE}}$
(Enter value for G.)
0.0007 ExE
(Enter value for $\gamma$.)

## 乙=G $\gamma$ <br> G? <br> $\stackrel{\Phi}{0}$

$$
\begin{array}{cc}
\hline \tau=\mathrm{Gr} & \\
\gamma ? & 0 .
\end{array}
$$

$$
\begin{array}{cr}
\hline \tau=G Y & \ddots \\
\tau= & 7.7 \\
\hline
\end{array}
$$

$i=u+\frac{\mathrm{P} v}{\mathrm{~J}} \quad(u, \mathrm{P}, v, \mathrm{~J}>0)$
$u$ is internal energy, P is pressure, $v$ is volume, J is mechanical equivalent of heat
-This equation is used to determine enthalpy when the internal energy, pressure and volume are known.

## Example

Determine enthalpy when the internal energy $u=1$ cal, pressure $\mathrm{P}=1$ atm (101.3 $\mathrm{N} / \mathrm{m}^{2}$ ), and volume $v=11.2 \ell$. Note that $\mathrm{J}=4.19 \mathrm{~J} / \mathrm{cal}$.
$\triangle \triangle 15$ FMLA
(Recall enthalpy.)

1 ExE
(Enter value for u.)
101.3 ExE
(Enter value for P.)
11.2 EXE
(Enter value for $v$.)
4.19 ExE
(Enter value for J.)

$$
\mathrm{i}=\mathrm{U}+\mathrm{PV} / \mathrm{J}
$$

U? $\quad \cdots 0_{0}^{\infty}$
$\mathrm{i}=\mathrm{L}+\mathrm{PV} / \mathrm{J}$
$P$ ?
$\stackrel{\circ}{\circ}$
$i=U+P v / J$
$v$ ?
๗
$\mathrm{i}=\mathrm{L}+\mathrm{PV} / \mathrm{J}$
J ?
0.

$$
\begin{aligned}
& \mathrm{i}=\mathrm{L}+\mathrm{PV} / \mathrm{J} \\
& \mathrm{i}=271.778043^{\mathrm{m}}
\end{aligned}
$$

## 116. Efficiency of Carnot's Cycle (1)

$$
\eta=\frac{\mathrm{Q}_{1}-\mathrm{Q}_{2}}{\mathrm{Q}_{1}} \quad\left(\mathrm{Q}_{1} \neq 0\right)
$$

$Q$ is volume of heat
-This equation is used to determine efficiency of Carnot's cycle when the low temperature heat volume and high temperature heat volume are known.

## Example

Determine the efficiency of Carnot's cycle when low temperature heat source $\mathrm{Q}_{2}=250 \mathrm{Kcal} / \mathrm{h}$ and high temperature heat source $\mathrm{Q}_{1}=1400 \mathrm{Kcal} / \mathrm{h}$.

## Operation

Display

AC 116 EMLA
(Recall efficiency of Carnot's cycle (1).)

1400 ExE
(Enter value for $\mathrm{Q}_{1}$.)


$$
\begin{aligned}
& \eta=\left(Q_{1}-Q 2\right) / Q_{1} \\
& Q 2 ?
\end{aligned}
$$

$$
\begin{aligned}
& \eta=\left(Q_{1}-Q 2\right) / Q .1 \\
& \eta=0.82142857 .1
\end{aligned}
$$

－This equation is used to determine efficiency of Carnot＇s cycle when the low tem－ perature heat source and high temperature heat source are known．

## Example

Determine the efficiency of Carnot＇s cycle when $\mathrm{T}_{2}=273.15 \mathrm{~K}$（freezing point of water）and $T_{1}=373.15 \mathrm{~K}$（boiling point of water）．

## AC 117 EMLA

（Recall efficiency of Carnot＇s cycle（2）．）

### 373.15 ［区欠

（Enter value for $\mathrm{T}_{1}$ ．）
273.15 EXE
（Enter value for $\mathrm{T}_{2}$ ．）
$\eta=(T 1-T 2) / T_{1}$
$T_{1} ?$

マ＝（T1－T2）／T1
T2？
$\eta=(T 1-T 2) / T 1$
$\eta=0.267988744$
118. Bernoulli's Theorem (1)
$\left[\frac{\mathrm{P}}{\gamma}+\frac{v^{2}}{2 g}+Z=\right.$ Constant $]$
$\mathrm{P}_{2}=\mathrm{P}_{1}+\gamma\left(\frac{v_{1}^{2}-v_{2}^{2}}{2 g}+Z_{1}-Z_{2}\right) \quad(v, \mathrm{P}, ~ r, Z>0)$
P. is pressure, $\gamma$ is specific weight, $v$ is flow velocity, $Z$ is height, $g$ is gravitational velocity
-This equation is used to determine pressure at two points for an inviscid fluid when the flow velocity and location (height) of two points, the pressure at one point, and the specific weight are known.

## Example

Determine the pressure at POINT 2 for water (specific weight $\gamma=1000 \mathrm{kgf} / \mathrm{m}^{3}$ ) with a pressure $\mathrm{P}_{1}=3000 \mathrm{kgf} / \mathrm{m}^{2}$ and flow velocity $\nu_{1}=6 \mathrm{~m} / \mathrm{s}$ at POINT 1 (height $\mathrm{Z}_{1}=4 \mathrm{~m}$ ), and flow velocity $v_{2}=5 \mathrm{~m} / \mathrm{s}$ at POINT 2 (height $\mathrm{Z}_{2}=2 \mathrm{~m}$ ).

Operation

AC 118 ( AMLA
(Recall Bernoulli's theorem (1).)
3000 EXE
(Enter value for $\mathrm{P}_{1}$.)

6 ExE
(Enter value for $\nu_{1}$.)

5 EXE
(Enter value for $v_{2}$.)

Display
$\mathrm{P} / \mathrm{\gamma}+\cup 2 / 29+Z=\mathrm{Ca}_{\mathrm{D}}$
$\mathrm{P}_{1} ?$

| $\mathrm{P} / \mathrm{Y}+\mathrm{V}_{2} / 29+\mathrm{Z}=\mathrm{Ca}_{\mathrm{w}}$ |
| :--- |
| $v_{1} ?$ |
| 0. |

$$
\begin{array}{ll}
\mathrm{P} / \mathrm{Y}+\vee 2 / 29+Z= & C_{0}^{0} \\
v 2 ? & 0 .
\end{array}
$$

| $P / \gamma+V 2 / 29+Z=C_{0}$ |  |
| :---: | :---: |
| $r ?$ | 0. |

1000 EXE
(Enter value for $\gamma$.)

4 EXE
(Enter value for $Z_{1}$.)

2 EXE
(Enter value for $Z_{2}$.)
$P / \gamma+\cup 2 / 29+Z=C 0$
Z1? 0.
$\mathrm{P} / \mathrm{\gamma}+\mathrm{V} / 2 \mathrm{~g}+\mathrm{Z}=\mathrm{Co}$
Z2? 0.

P/Y+V2/29+Z=C口. $P$ こ = 5560.843917

## 119. Bernoulli's Theorem (2)

$\left[\frac{\mathrm{P}}{\gamma}+\frac{v^{2}}{2 g}+Z=\right.$ Constant $]$
$v_{2}=\sqrt{\frac{2 g\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right)}{\gamma}+v_{1}^{2}+2 g\left(Z_{1}-Z_{2}\right)} \quad($ ( $, \mathrm{P}, \gamma, Z>0)$
P is pressure, $\gamma$ is specific weight, $v$ is flow velocity, Z is height, $g$ is gravitational velocity
-This equation is used to determine flow velocity at two points far an inviscid fluid when the pressure and location (height) of two points, the flow velocity at one point, and the specific weight are known.

## Example

Determine the flow velocity at POINT 2 for water (specific weight $\gamma=1000 \mathrm{kgt} / \mathrm{m}^{3}$ ) with a pressure $P_{1}=4000 \mathrm{kgf} / \mathrm{m}^{2}$ and flow velocity $\nu_{1}=5 \mathrm{~m} / \mathrm{s}$ at POINT 1 (height $\mathrm{Z}_{1}=6 \mathrm{~m}$ ), and pressure $\mathrm{P}_{2}=4200 \mathrm{kgf} / \mathrm{m}^{2}$ at POINT 2 (height $\mathrm{Z}_{2}=5 \mathrm{~m}$ ).

AC 119 FMLA
(Recall Bernoulli's theorem (2).)

4000 ExE
(Enter value for $\mathrm{P}_{1}$.)
4200 琘
(Enter value for $\mathrm{P}_{2}$.)

1000 ExE
(Enter value for $\gamma$.)

| $P / Y+\cup 2 / 29+Z=C_{0}$ |  |
| :--- | :--- |
| $P_{1} ?$ | 0. |


| $P / \gamma+V 2 / 29+Z=C_{0}$ |  |
| :--- | :--- |
| $P 己 ?$ | 0. |

$$
\begin{array}{|cc|}
\hline P / \gamma+V 2 / 29+Z=C 0 \\
r ? & 0 . \\
\hline
\end{array}
$$

| $\mathrm{P} / \gamma+V 2 / 29+Z=C_{0}$ |  |
| :--- | :--- |
| $V 1 ?$ | 0. |

5 EXE
(Enter value for $v_{1}$.)

6 EXE
(Enter value for $Z_{1}$.)

5 EXE
(Enter value for $Z_{2}$.)

$\mathrm{P} / \mathrm{r}+\mathrm{V}_{2} / 29+Z=\mathrm{C}_{\mathrm{B}} \mathrm{O}_{-}$ Z2? 0.
$\mathrm{P} / \mathrm{Y}+\mathrm{V}_{2} / 29+Z=\mathrm{CO}_{\mathrm{B}}$
$\mathrm{v} 2=6.378921539$
120. Bernoulli's Theorem (3)
$\left[\frac{\mathrm{P}}{\gamma}+\frac{v^{2}}{2 g}+Z=\right.$ Constant $]$
$\mathrm{Z}_{2}=\frac{\mathrm{P}_{1}-\mathrm{P}_{2}}{\gamma}+\frac{v_{1}^{2}-v_{2}^{2}}{2 g}+\mathrm{Z}_{1} \quad($ u, $\mathrm{P}, \gamma, \mathrm{Z}>0)$
P is pressure, $\gamma$ is specific weight, $v$ is flow velocity, Z is height, $g$ is gravitational velocity

- This equation is used to determine the position of POINT 2 for an inviscid fluid when the pressure and flow velocity of two points, the position (height) at one point, and the specific weight are known.


## Example

Determine the position at POINT 2 for a liquid (specific weight $\gamma=1000 \mathrm{kgf} / \mathrm{m}^{3}$ ) with a pressure $P_{1}=20,000 \mathrm{kgf} / \mathrm{m}^{2}$ and flow velocity $v_{1}=1.6 \mathrm{~m} / \mathrm{s}$ at POINT 1 (height $\left.\mathrm{Z}_{1}=5 \mathrm{~m}\right)$, and pressure $\mathrm{P}_{2}=21,790 \mathrm{kgf} / \mathrm{m}^{2}$ and flow velocity $\nu_{2}=2.6 \mathrm{~m} / \mathrm{s}$ at POINT 2 .

Display

AC 120 (MLA
(Recall Bernoulli's theorem (3).)

## 20000 EXE

(Enter value for $\mathrm{P}_{1}$.)

## 21790 EXE

(Enter value for $\mathrm{P}_{2}$.)
1000 EXE
(Enter value for $\gamma$.)
$P / \gamma+\cup 2 / 29+Z=C_{0}$
$P_{1} ?$

$$
\begin{aligned}
& \mathrm{P} / \mathrm{Y}+\mathrm{V}^{2} / 29+\mathrm{Z}=\mathrm{Ca}_{\mathrm{E}} \\
& \mathrm{P} \text { ? }
\end{aligned}
$$

| $\mathrm{P} / \mathrm{r}+\vee 2 / 2 \mathrm{~s}+\mathrm{Z}=\mathrm{Ca}_{\mathrm{a}}$ |  |
| :---: | :---: |
| $\mathrm{r} ?$ | 0. |

$$
\begin{aligned}
& \mathrm{P} / \mathrm{Y}+\mathrm{V}^{2 / 29+Z=}=\mathrm{C}_{0} \\
& \mathrm{V1}^{?}
\end{aligned}
$$

1.6 ExE
(Enter value for $v_{1}$.)

### 2.6 Exe

(Enter value for $v_{2}$.)

5 ExE
(Enter value for $\mathrm{Z}_{4}$.)
$P / Y+\cup 2 / 29+Z=\mathrm{Ca}_{\mathrm{a}}$
ve?
0.
$\mathrm{P} / \mathrm{Y}+\mathrm{V}_{2} / 29+Z=\mathrm{Co}_{\mathrm{B}}$
$Z_{1} ?$
$\mathrm{P} / \gamma+\cup 2 / 29+Z=\mathrm{Co}_{0}$ $z \imath=2.995859595$

## 121. Equation of Continuity (1)

$\mathrm{A}_{1} v_{1} \rho_{1}=\mathrm{A}_{2} v_{2} \rho_{2}=$ Constant $\quad\left(\mathrm{A}_{2}, \rho_{2}>0\right)$
$\mathrm{A}_{1}$ and $\mathrm{A}_{2}$ are cross sectional areas of ducts, $v_{1}$ and $v_{2}$ are flow velocities, $\rho_{1}$ and $\rho_{2}$ are densities of liquids

- This equation is used to determine the flow velocity of a liquid at a point when the cross sectional area of a duct and the density of the liquid are known and the weight flow is constant.


## Example

Determine the flow velocity when the cross sectional area of a duct is $\mathrm{A}_{2}=0.09 \mathrm{~m}^{2}$, if the velocity is $\nu_{1}=0.4 \mathrm{~m} / \mathrm{s}$ when the area is $\mathrm{A}_{1}=0.04 \mathrm{~m}^{2}$, and density of the liquid is $\rho_{1}=\rho_{2}=1 \mathrm{~g} / \mathrm{cm}^{3}$.

Operation
Display

## AC 121 EMLA

(Recall equation of continuity (1).)
0.04 ExE
(Enter value for $\mathrm{A}_{1}$.)
0.4 ExE
(Enter value for $\nu_{1}$.)

1 ExE
(Enter value for $\rho_{1}$.)
0.09 EXE
(Enter value for $\mathrm{A}_{2}$.)

1 ExE
(Enter value for $\rho_{2}$.)

> A1v1P1=Azivepre $=$
> $A_{1} ?$
> 0.

$\mathrm{Al}_{1} \cup_{1} \rho_{1}=\mathrm{A}$ 2 $^{2} \rho_{\mathrm{\rho}}^{2}=$
$\rho_{1} ?$
0


$$
\begin{aligned}
& \text { A1v1 } \rho_{1}=\mathrm{A} 2 \vee 2 \rho 2= \\
& \vee 2=0.177777777
\end{aligned}
$$

## 122. Equation of Continuity (2)

$\mathrm{A}_{1} v_{1} \rho_{1}=\mathrm{A}_{2} v_{2} \rho_{2}=\mathrm{Constant} \quad\left(v_{2} \neq 0, \rho_{2}>0\right)$
$\mathrm{A}_{1}$ and $\mathrm{A}_{2}$ are cross sectional areas of ducts, $v_{1}$ and $v_{2}$ are flow velocities, $\rho_{1}$ and $\rho_{2}$ are densities of liquids
-This equation is used to determine the cross sectional area of a duct when the flow velocity of a liquid at a point and the density of the liquid are known and the weight flow is constant.

## Example

Determine the cross sectional area of a duct when the flow velocity is $v_{2}=3.5 \mathrm{~m} / \mathrm{s}$, if the velocity is $v_{1}=2.5 \mathrm{~m} / \mathrm{s}$ when the area is $A_{1}=0.12 \mathrm{~m}^{2}$, and density of the liquid is $\rho_{1}=\rho_{2}=1 \mathrm{~g} / \mathrm{cm}^{3}$.
0.12 EXE
(Enter value for $\mathrm{A}_{1}$.)
$\mathrm{A} 1 \cup 1 \rho_{1}=\mathrm{A} 2 \vee 2 \rho_{2}=$
$\mathrm{A1} ?$
A1 $V_{1} \rho_{1=}=A 2 V_{2 \rho} \rho_{1}=$
$V_{1} ?$


$$
\begin{array}{lr}
\hline \mathrm{A}_{1} \vee 1 \rho_{1}=\mathrm{Az} \vee 2 \rho_{2}= \\
\rho_{2} ? & 0 . \\
\hline
\end{array}
$$



## 123. Module (1)

$\left[\mathrm{M}=\frac{\mathrm{D}_{1}}{\mathrm{Z}_{1}}=\frac{\mathrm{D}_{2}}{\mathrm{Z}_{2}}=\frac{\mathrm{P}}{\pi}\right]$
$M=\frac{D}{Z}$
(D, Z>0, and are integers)
$D$ is pitch diameter of a gear, $Z$ is number of teeth on the gear
-This equation is used to determine the module when the pitch diameter of a gear and the number of teeth on the gear are known.

## Example

Determine the module for a gear with $Z=24$ teeth and a pitch diameter of $\mathrm{D}=36 \mathrm{~mm}$.

$M=D / Z$
Z?
$\stackrel{0}{2}$.
$M=D / Z$
M
1.5
124. Modute (2)

$$
\begin{align*}
& {\left[\mathrm{M}=\frac{\mathrm{D}_{1}}{\mathrm{Z}_{1}}=\frac{\mathrm{D}_{2}}{\mathrm{Z}_{2}}=\frac{\mathrm{P}}{\pi}\right]} \\
& \mathrm{M}=\frac{\mathrm{P}}{\pi}  \tag{P>0}\\
& \mathrm{P} \text { is pitch of a gear }
\end{align*}
$$

-This equation is used to determine the module when the pitch of a gear is known.

## Example

Determine the module for a gear with a pitch of $P=6 \mathrm{~mm}$.

Display

[^1]
$M=P / \pi$
$M=1.909859317$

## 125．Module（3）

$$
\left.\begin{array}{ll}
{\left[\mathrm{M}=\frac{\mathrm{D}_{1}}{Z_{1}}=\frac{\mathrm{D}_{2}}{Z_{2}}=\frac{P}{\pi}\right.}
\end{array}\right] \quad . \quad \begin{array}{ll}
\mathrm{D}_{2}=\frac{\mathrm{D}_{1} Z_{2}}{\mathrm{Z}_{1}} & \binom{\mathrm{D}_{1}, Z_{1}, Z_{2}>0}{Z_{1} \text { and } Z_{2} \text { are integers }}
\end{array}
$$

$D_{1}$ is pitch diameter of driving gear，$D_{2}$ is pitch diameter of driven gear，$Z_{1}$ is number of teeth on driving gear，$Z_{2}$ is num－ ber of teeth on driven gear
－This equation is used to determine the pitch diameter of the driven gear when the driving gear＇s pitch diameter and number of teeth are known，and the driven gear＇s number of teeth are known．

## Example

Determine the pitch diameter of a driven gear when the pitch diameter of the driv－ ing gear is $D_{1}=15 \mathrm{~mm}$ ，the number of teeth is $Z_{1}=32$ ，and the number of teeth on the driven gear is $\mathrm{Z}_{2}=46$ ．

> ロ2＝ロ1Z2／Z1
> D1？ 0.

$$
\begin{array}{ll}
\hline D 2=\square 1 Z 2 / Z 1 \\
Z 2 ? & 0 .
\end{array}
$$

$$
\begin{array}{ll}
\hline \mathrm{Da}=\mathrm{D}_{1} \mathrm{Z} / \mathrm{Z}_{1} & 0 \\
\mathrm{Zi}_{1} ? & 0 .
\end{array}
$$

ロ2＝ロ1Zュ／Z1
$\square 2=$ $21.5625^{\circ}$

## 126. Module (4)

$\left[\mathrm{M}=\frac{\mathrm{D}_{1}}{\mathrm{Z}_{1}}=\frac{\mathrm{D}_{2}}{\mathrm{Z}_{2}}=\frac{\mathrm{P}}{\pi}\right]$
$D=\frac{P Z}{\pi}$
( $\mathrm{P}, \mathrm{Z}>0$, and are integers)
P is pitch of a gear, Z is number of teeth on the gear
-This equation is used to determine the pitch diameter of a gear when its pitch and number of teeth on the gear are known.

## Example

Determine the pitch diameter for a gear with $\mathrm{Z}=84$ teeth and a pitch of $\mathrm{P}=2.22 \mathrm{~mm}$.

AC 126 (FMLA
(Recall Module (4).)
2.22 ExE
(Enter value for P.)

84 ExE
(Enter value for Z.)

$$
\begin{array}{cc}
\hline \overline{\square=P Z / \pi} & 0 \\
P ? & \\
\hline
\end{array}
$$

$$
\begin{array}{cc}
\hline \mathrm{D}=\mathrm{P} Z / \pi & \\
\mathrm{Z} ? & \mathrm{~g} \\
\hline
\end{array}
$$

$D=P Z / \pi$
$\mathrm{D}=59.3584275{ }^{\mathrm{I}}$
127. Reynold's Number
$\mathrm{R}=\frac{u \ell}{\nu} \quad(\nu \neq 0)$
$u$ is flow velocity, $\ell$ is inside diameter of duct, $v$ is kinematic viscosity
-This equation is used to determine the Reynold's number when the velocity, duct inner diameter, and kinematic viscosity are known for a liquid flowing through a duct.

## Example

Determine the Reynold's number for liquid flowing at velocity $u=0.3 \mathrm{~m} / \mathrm{s}$ through a duct with an inner diameter $\ell=80 \mathrm{~mm}$ when the kinematic viscosity of the liquid is $y=1.004 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$.

## Operation

## Display

$\triangle 127$ FMLA
(Recall Reynold's number.)
0.3 Exx
(Enter value for $u$.)

80 Exp $-1-1$ ExE
(Enter value for $\ell$.)
1.OO4 EXP
(Enter value for $v$.
6 EXE

| $\mathrm{R}=\mathrm{Ll} / \mathrm{V}$ | . |  |
| :---: | :---: | :---: |
| $\mathrm{L} ?$ | $\ddots$ | 0. |


| $R=U l / V$ |  |
| :---: | :---: |
| $1 ?$ | 0 |

$$
\begin{array}{cl}
\hline \mathrm{R}=\mathrm{Ul} / \nu & \\
\nu ? & 0 . \\
\hline
\end{array}
$$

$$
\mathrm{R}=\mathrm{LIl} / \mathrm{V}
$$

$\mathrm{R}=23904.38247$

## 128. Calculations Using a Stadia

$\mathrm{S}=\mathrm{K} \ell \cos ^{2} \alpha+\mathrm{C} \cos \alpha$ (Horizontal distance)
$h=\frac{1}{2} \mathrm{~K} \ell \sin 2 \alpha+\mathrm{C} \sin \alpha$ (Difference in Elevation) $\binom{0 \leq \alpha \leq 90^{\circ}}{\mathrm{K}, \ell, \mathrm{C}>0}$
K and C are stadia constants, $\alpha$ is angle of elevation
-This equation is used to determine the horizontal distance from the transit to the leveling rod by reading the angle of elevation when a transit is used to read the length of the leveling rod between the upper and lower stadia lines.

## Example

Determine the horizontal distance between two points and the elevation difference between the transit point and leveling rod when the length on the leveling rod between the upper and lower stadia lines is $\ell=0.865 \mathrm{~m}$, and the elevation difference is $\alpha=+4$. Note that $\mathrm{K}=100$ and $\mathrm{C}=0$.

## Operation

Display
M00E 4 ExE (Degree)
AC 128 EMLA

100 ExE
(Enter value for K .)
0.865 EXE
(Enter value for l .)

4 这E
(Enter value for $\alpha$.)

OE Ex
(Enter value for C.)


| $5=K 1(\cos \alpha) 2+C$ |  |
| :---: | :---: |
| $\alpha ?$ | 0. |


| $\left.\begin{array}{cc} \hline S=K l(\cos & \alpha \end{array}\right) 2+\mathrm{C},$ |  |
| :---: | :---: |
|  |  |

$$
\begin{array}{|c}
\hline S=K 1(\text { COS } \alpha) 2+C_{6} \\
S=86.07909397
\end{array}
$$

| $h=6.0192366$ |
| :---: |

## Appendices



## Appendix A Keys and Indicators

## - General Guide


(1) Shift key
(2) Power switch
(3) Number keys
(4) Display
(5) Contrast dial
(6) Cursor/Replay keys
(7) Mode key
(8) Function keys
(9) Delete key
(10) All clear key
(11) Arithmetic operation keys
(12) Execute key
(13) Formula key

## －Display

## －Upper dot display

－The upper dot display is used for calculations and formulas．
－The number zero is shown on the display with a diagonal line to differentiate it from the letter＂O＂．
－The blinking line in the upper dot display is called the＂cursor＂and it shows you where a character will appear when you input something．
－The symbols＂$\leftarrow$＂and＂$\rightarrow$＂tell you when the currently displayed formula or value is so large that it runs off the left or right of the display．

## －Indicators

（S）
SHifi key was pressed．
（⿴囗⿰丨丨⿰讠 ）．．．．．．．．．．．
（A）．．．．．．．．．．．［1ABPR key was pressed．
$X^{n} . . . . . . . . . . x$ was pressed．
hyp ．．．．．．．．have key was pressed．（fx－5000F）
WRT ．．．．．．Indicates WRT mode．
PCL ．．．．．．．．Indicates PCL mode．
Dise．．．．．．．．．．Appears when the calculation is stopped for a result display．
LR ．．．．．．．．．．Indicates LR mode．
SD ．．．．．．．．．．Indicates SD mode．
Fix．．．．．．．．．．Indicates number of decimal places specified．
Sci．．．．．．．．．．Indicates number of significant digits specified．
$\square$ ．．．．．．．．．．Indicates degrees specified for unit of angular measurement．
R Indicates radians specified for unit of angular measurement．
［ Indicates grads specified for unit of angular measurement．

## －Lower display

－The lower display is used to show calculation results，variable input，and the values assigned to variables．
－This display also shows the number of steps remaining in memory when you are storing a user formula．
－The＂4＂indicator on the left of the display tells you that other calculation results follow，and can be displayed by pressing the 罒 key again．

## －Power switch

Slide the switch up to turn power ON and down to turn power OFF．

## - Key Operations and Their Functions

| Key Operation | Application |
| :---: | :---: |
| 5 FHFT | Input of functions marked in brown above the input keys. |
| A APHA | Input of upper case alphabetic characters and symbols marked in red at the lower right of the keys. |
| $\text { SHITT } \mathrm{ADPO}$ | Lock for continuous input of multiple alphabetic characters. |
| A AIPHA | Unlocks continuous input : of multiple alphabetic characters. |
| Prog | Executes a user formula when pressed before a user formula memory name entry. |
| SHIFT Prog | Input or recall of constant memories. |
| All PHA Prog, | Encloses messages in quotation marks. |
| O | Moves cursor to the left. Hold down for high speed movement. |
| 5 | Moves cursor to the right: Hold down for high speed movement. |
| Exa | Locates cursor at end of calculation formula or value when [四 is used for input. |
| EXE $\leftrightarrows$ | Locates cursor at beginning of calculation formula or value when Exe is used for input. |
| SHIFT ${ }^{\text {LoOk }}$ | Displays formula on upper dot display during input of values for variables in formula calculations. |
|  | Enters insert mode for insertion of characters or functions within a calculation for formula. |
| MODE | Used in combination with other keys for a variety of functions. |
| MODE 1 | For manual calculations and execution of formulas stored in memory. |
| MODE 2 | WRT mode for writing and checking of user formulas: |
| (MODE) 3 | PCL mode for clearing of user formulas from memory. |
| MODE 4 EXE $\therefore \because \ldots$ | Changes unit of angular: measurement to degrees. |


| Key Operation | Application |
| :---: | :---: |
| MODE [5] EXE | Changes unit of angular measurement to radians. |
| M00E 6] ExE | Changes unit of angular measurement to grads. |
| M00E 7 7 込 | Sets number of decimal places as $0 \sim 9$. * $n=0 \sim 9$ (integer) |
| MODE [8] EXE | Sets number of significant digits as $1-10$. ${ }^{*} n=0 \sim 9$ (integer) |
| M000 9 EXE | Cancels number of decimal places or number of significant digits specification: |
| M000 + | COMP mode for arithmetic or scientific calculations. |
| M000 | Binary/octal/decimal/hexadecimal conversions and calculations. |
| MODE X | SD mode for standard deviation calculations. |
| MOOE $\square$ | LR mode for regression calculations. |
| SHHFT MODE 4 | Specifies degrees as unit for input value. |
| S5H1F | Specifies radians as unit for input value. |
| SHIFF MOOES 6 | Specifies grads as unit for input value. |
| $\square$ | Inputs a colon to connect two calculations into a single calculation. |
|  | Inputs a " $\boldsymbol{A}$ " to connect two calculations into a single calculation. |
| ALPMAR | Input of lower case alphabetic characters marked in red at the lower right of the keys. |
| ENG (SHIFI) ENG) | Converts values to equivalent engineering units by shifting the decimal place to the left or right and adjusting the exponent display. $\left(0^{3}=\mathrm{K}, 10^{6}=\mathrm{M}, 10^{9}=\mathrm{G}, 10^{-3}=\mathrm{m}\right.$, $\left.10^{-6}=\mu_{1} \cdot 10^{-9}=n_{1} \cdot 10^{-12}=\mathrm{p}\right)$. |
| ENG | In the Base-n mode, inputs NOT for logical operations. |
| $\text { SHIFT] } \frac{\text { ENG }}{x \mathrm{NO}}$ | Inputs $X O R$ in the Base-n mode. |


| Key Operation | Application |
| :---: | :---: |
| AIPHMA ENG | Input of Greek characters marked in red at the upper right of the keys． |
| $\square$ | Returns the square root of the following value： |
|  | Specifies decimal calculations in the base－n mode． |
| $\text { SHIFT } \frac{V}{\\| d}$ | Specifies the next value input is decimal value in the base－$n$ mode： |
| $\text { 私 } 1 \text { 雨 }$ | Input of upper case characters marked in red at the lower right of the keys as suffixes． |
| （x） | Returns the square of the previously entered value： |
| Smilit $x^{\text {ass }}$ | Returns the absolute value of the following value．．． |
| $\text { SHIFIT } \frac{x^{2}}{16}$ | Specifies the next value input is hexadecimal value in the base－$n$ mode． |
| $\frac{x^{2}}{\operatorname{Hex}} \text { EXE }$ | Specifies hexadecimal calculations in the base－n mode． |
| （axphan $x^{\text {易 }}$ | Input of lower case characters marked in red at the lower right of the keys as suffixes． |
| 1 log | Returns the common logarithm of the following value． |
| $54 \mathrm{HfF}] \frac{10^{x}}{10 \mathrm{og}}$ | Makes following value exponent of 10. |
| ［109［10］ | Specifies binary calculations in the base－n mode． |
| $\text { SHIFT } \frac{\log }{\square \mathrm{G}}$ | Specifies the next value input is binary value in the base－ $n$ mode． |
| (14.1.PAA) | Specifies following numeric input is for small numbers used for suffixes． |
| $\underline{1 n}$ | Returns the natural logarithm of the following value． |
|  | Makes following value exponent of $e$ ． |
| In ExE | Specifies octal calculations in the base－n mode．． |
| $\text { SHIFTTI } \frac{\ln }{\square}$ | Specifies the next value input is octal value in the base－n mode． |
| A19 | Input of constants marked in red at the upper left of the keys． |


| Key Operation | Application |
| :---: | :---: |
| $x^{-7}$ | Returns reciprocal of previously entered value. |
| $\frac{x^{-1}}{\mathbb{A}}$ | Inputs hexadecimal value A in the base-n mode. |
| $x!$ | Returns factorial of previously entered value. *With the fx-5000F, press [infir $\frac{x}{x-1}$. |
| 098 | Used to input sexagesimal value as degrees, minutes, seconds (ex. $78^{\circ} 45^{\prime} 12^{\prime \prime} \rightarrow 78$ 回 45 ( 12 (m) ). |
| $\frac{\square+0}{80}$ | Inputs hexadecmal value $B$ in base- $n$ mode. |
| SHFT) | Displays decimal value in degree/minute/second format. |
| $\frac{\text { hyp }}{\mathbb{C}}$ | Inputs hexadecimal value $C$ in base- $n$ mode. |
| hyp sin | Returns the hyperbolic sine (sinh) of the following value. |
| hyp cos | Returns the hyperbolic cosine (cosh) of the following value. |
| hyp tan | Returns the hyperbolic tangent (tanh) of the following value. |
| $\text { SHIFT hyp } \frac{\sin ^{-1}}{\sin }$ | Returns the inverse hyperbolic sine $\left(\sinh ^{-1}\right)$ of the following value. |
| $\text { SHIFT hyp } \cos \cos ^{-1}$ | Returns the inverse hyperbolic cosine (cosh-1) of the following value. |
| SHIFT hyp tan ${ }^{\text {tan }}$ | Returns the inverse hyperbolic tangent (tanh ${ }^{-1}$ ) of the following value. |
| $\sin \cdots$ | Returns the sine of the following value. |
| $\frac{\sin }{\text { D }}$ | Inputs the hexadecimal value D in the base-n mode. |
| $\text { ShIFT } \sin ^{-1}$ | Returns the arc sine $\left(\sin ^{-1}\right)$ of the following value. |
| Cos | Returns the cosine of the following value. |
| $\frac{\cos }{\mathrm{E}}$ | Inputs the hexadecimal value E in the base-n mode. |
| ${ }^{\text {SHIFT }}{ }^{\mathrm{cos}^{-1}} \mathrm{Cos}$ | Returns the arc cosine ( $\cos ^{-1}$ ) of the following value. |



| Key Operation | Application |
| :---: | :---: |
| SHIFT $\sqrt{\square}$ | Inputs $\sqrt[x]{ }$ in the SD and LR modes. |
| $\underset{\text { or }}{\sqrt[x]{r}}$ | Inputs logical OR in the base-n mode. |
| $0 \sim 9$ | Used for input of numbers and the decimal point. |
| $\begin{array}{l\|l} \mathrm{SH} / \mathrm{Find} \\ 0 \end{array}$ | Rounds the internal value to the number of decimal"places specified by $100 \mathrm{E}, 7$ or number of significant digits specified by [500e |
| SHIFT ${ }^{\text {Aans }}$ | Generates a pseudorandom number between 0:000 and 0.999 . |
| $\text { SHIFT } \frac{1}{\text { EI }} \text { EXE }$ | Returns the mean of $x$-data in the SD or LR mode. |
| $\text { SHIFT } \frac{1 \mathrm{Prog}}{1} \frac{1}{\left[x^{2}\right]} \text { EXE }$ | Returns the sum of squares of $x$-data in the SD or LR mode. |
| (ALPHA | Speed of light in vacuum (c). |
| $\text { SHITT } \frac{2}{x-5, y} \text { EXE }$ | Returns the population standard deviation of $x$-data in the SD or LR mode. |
|  | Returns the sum of $x$-data in the SD or LR mode. |
| ALPHA | Planck's constant ( $h$ ) |
| $\text { SHITT } 3$ | Returns the sample standard deviation of $x$-data in the SD or LR miode. |
| $\text { SHIFT Prog } \frac{3}{1 \pi} \text { EXE }$ | Returns the number of data in the SD or LR mode. |
| ALPMAA | Gravitational constant (G) |
| SHiff <br> (4) EXE | Returns the mean of $y$-data in the LR mode. |
| SHIFT Prog $\frac{1 \mathrm{~L}}{4}$ EXE | Returns the sum of squares of $y$-data in the LR mode. |
|  | Elementary charge (e) , |
| SHIFT <br> 5 [yen EXE | Returns the population standard deviation of $y$-data in the LR mode. |
| $\text { SHIFT } \frac{1 \mathrm{k}}{\text { Prog }} \frac{5}{\text { Izy }} \text { EXE }$ | Returns the sum of $y$-data in the LR mode. |
|  | Electron rest mass (me) |


| Key Operation | Application |
| :---: | :---: |
| (51IFT 6 EXE | Returns the sample standard deviation of $y$-data in the LR mode. |
| SHIFT $\stackrel{\text { K. }}{1}$ $\qquad$ 6 EXE | Returns the sum of products of $x$ and $y$-data in the LR mode. |
|  | Atomic mass unit ( $u$ ) |
| SHIFT <br> $\frac{7}{\|4\|}$ EXE | Returns constant term of regression formula ( $A$ ) in the LR mode. |
|  | Avogadro constant (NA) |
| $\text { SHIFT } 8 \text { EXE }$ | Returns regression coefficient $(B)$ in the LR mode. |
| $\text { (AIPHA } 1 \mathrm{ICONS} 8$ | Boltzman constant (k) |
| $\text { SHIFT } \frac{9}{[r]} \text { EXE }$ | Returns correlation coefficient (r) in the LR mode. |
|  | Molar volume of ideal gas at s.t.p. (Vm) |
| EXP | Enters the following value as an exponent. |
| (SHIFT) ${ }^{\text {EXP }}$ | Inputs pi. |
| DEL $\ldots$ | Deletes the character or function at the current location of the cursor. |
| $\mathrm{SHIFT} \mathrm{McI}$ | Clears the contents of all user formulas in the PCL mode. |
| SHIFI McI EXE - ${ }_{\text {OLI }}$ | Clears the contents of the constant memories. |
| ACon | Clears all formulas and values from the display: Clears any error messages, and turns power back on after activation of the auto power OFF function. <br> Clears the contents of a specific user formula in the PCL mode. |
| SHIFT ${ }_{\text {ACIT }}^{\text {AC }}$ | Clears the contents of the statistical memories. |


| Key Operation | Application |
| :---: | :---: |
| X | Inputs multiplication sign. |
| SHFT $x$ EXE | Returns the estimated value of $x$ in the LR mode: |
|  | Permittivity of vacuum (eo) |
| $\square$ | Inputs division sign. : |
| SHIFT E EXE | Returns the estimated value of $y$ in the LR mode. |
|  | Permeability of vacuum ( $\mu \mathrm{o}$ ) |
| H | Inputs addition sign. |
|  | Acceleration of free fall (g) |
| E | Inputs subtraction sign. |
|  | Molar gas constant (R) |
| FMLA | Press following input of a number to recall the builtitn formula which corresponds to the number, or press while a built-in formula is displayed to move to the next built-in formüla. |
| SHIFT FMLA | Press while a built-in formula is displayed to move to the previous built-in formula. |
| EXE | Press to obtain the result of the currently displayed formula or calculation, or to input data. |
| SHIFT Ans | Recalls the current contents of-the answer memory |

## Appendix B What to Do When an Error Occurs

An error is generated when you make some mistake in operation of the calculator, or when you try to execute a user formula which is not written correctly. You will see a message appear on the display when an error occurs, something like the example illustrated below.


Press the or $\square_{0}$ key to locate the error and make the required corrections. The steps you take to correct the situation depend on the type of error generated.

## - Error Message Table

| Message | Meaning | Countermeasures |
| :---: | :---: | :---: |
| Syn ERROR (Syntax Error) | Mistake in the format used for the formula. | Correct the mistake. |
| Ma ERROR <br> (Mathematical Error) | -Calculation result is outside allowable range for the calculator. <br> -Calculation is outside of the range allowed for a function being used. <br> - Illegal mathematical operation (such as division by zero). | Check number value inputs to be sure they are within the allowable range. Be sure to check memory contents when memories are used in the calculation. |
| Stk ERROR (Stack Error) | Calculation exceeds the capacity of the numeric stack or the operation stack. | Simplify to keep calculations within eight levels for the numeric stack and 20 levels for the operation stack. Try break. ing complex calculations down into two or more parts. |
| Mem ERROR (Memory Error) | More than 17 different variables used in a single formula. | Divide the formula so that each part has 16 or fewer variables. |

## Appendix C Technical Reference

This reference includes technical information concerning maximum input capacities, stacks, and specifications.

## - Order of Operations

This calculator uses true algebraic logic to perform calculations in the following sequence.
(7) Scientific functions which require input of a value preceding the function $x^{2}, x^{-1}, x!,{ }^{\circ},{ }^{r},{ }^{g}, \square, x^{n}$
(2) Powers/roots
$x^{y}, \sqrt[x]{ }$
(3) Abbreviated multiplication format in front of pi, memory name, or parentheses. $2 \pi, 4 A_{\text {, etc }}$
(4) Scientific functions which require input of a value after the function $\sqrt{ }, \sqrt[3]{ }, \log , 10^{x}, \ln , e^{x}, \sin , \cos , \tan , \sin ^{-1}, \cos ^{-1}, \tan ^{-1}$, sinh, cosh, tanh, sinh ${ }^{-1}, \cosh ^{-1}, \tanh ^{-1},(-)$, Abs, h, d, b, o, Neg, Not
(5) Abbreviated multiplication format in front of scientific functions which require input of a value preceding the function
$3 \sin 5,6 \sqrt{ } 7,2 \sin 30 \cos 60$, etc.
(6) Multiplication and division
$\times, \div$
(7) Addition and subtraction

+ , -
(8) Logical AND
(9) Logical OR and XOR
- Calculations which contain a series of operations which are of the same priority are performed from left to right.
- Compound functions are performed from right to left.
- Anything contained in parentheses receives highest priority.


## Example

$2+3 \times\left(\log \sin 2 \pi^{2} \mathrm{rad}+6.8\right)=22.07101691$


## - About Stacks

This calculator assigns a block of memory for stacks which temporarily store low priority numeric values and commands. The numeric stack has eight levels, while the operation stack has 20 levels. A Stk ERROR appears on the display whenever your calculation exceeds the capacity of one of the stacks.

## Example

$2 \times((3+4 \times(5+4) \div 3) \div 5)+8=$
$\uparrow \uparrow \uparrow \uparrow \prod_{12} \uparrow \prod_{3} \uparrow \prod_{\frac{3}{5}} \uparrow \uparrow \frac{1}{5}$
Numeric Stack

| $(1)$ | 2 |
| :---: | :---: |
| $(2)$ | 3 |
| $(3)$ | 4 |
| $(4)$ | 5 |
| $(5)$ | 4 |
| $\vdots$ |  |

Operation Stack

| $\mathbf{1}$ | $\times$ |
| :---: | :---: |
| 2 | 6 |
| 3 | $($ |
| 4 | + |
| 5 | $\times$ |
| 6 | $($ |
| 7 | + |
| $\vdots$ |  |

- Note that calculations are performed according to the order of operations described above, and not according to their relative position in the stack. Once an operation is performed, it is cleared from the stack.


## Maximum Value Sizes

You can enter values with up to 10 digits for the mantissa and 2 digits for the exponent. Internal intermediate results are handled with a mantissa up to 12 digits long, and a 2 -digit exponent, but results are displayed in the 10 -digit mantissa/ 2-digit exponent format. Calculation results of $10^{10}$ (10-billion) or greater or less than $10^{-2}(0.01)$ are automatically displayed in exponential form.

## Example

$123456789 \times 9638=$
$123456789 \mathbf{x} 9638$ ㅌㅈxE


## - Display Register

The display register stores the latest displayed value, and redisplays the value in a new format when the following commands are executed.

| Mcl | Hex | Dec | Bin | Oct | Deg | Rad |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Gra | Fix | Sci | Norm | Rnd | Scl |  |

This mades it easy to confirm that the above commands produce the desired result.

## ■ Number of Input Characters

This unit features a 79-step area for calculation.
One function comprises one step. Each press of numerals, $\mathbb{P}, \mathbf{Z}, \boldsymbol{X}$, and $\mathbb{P}$ comprises one step. Though such operations as [ntiri lequire two key operations, they actually comprise only one function and, therefore, only one step.
You can confirm these steps using the cursor. With each press of the or 国 key the cursor is moved one step.
Input characters are limited to 79 steps. Usually the cursor is represented by a blinking " " " ", but once the 73 rd step is reached the cursor changes to a blinking " $\quad$ ". If the " $\boxed{\text { " }}$ " appears during a calculation, the calculation should be divided at some point and performed in two parts.

## - How to Count User Formula Steps

The memory capacity of this calculator is counted in formula steps. You can input up to 675 formula steps in total for all of the user formulas to store. Each step is represented by all of the characters which appear on the display for a key operation, whether the key operation involves one key or more than one key. The following sample display illustrates a typical step count.


## Input Ranges of Scientific Functions



| $x^{y}$ | $\begin{aligned} & x>0:-1 \times 10^{100}<y \log x<100, x=0: y>0 \\ & x<0: y=n \text { or } \frac{1}{2 n+1}(n=\text { integer }) \\ & -1 \times 10^{100}<y \log \|x\|<100 \end{aligned}$ |
| :---: | :---: |
| $\sqrt[x]{y}\left(y^{\frac{1}{x}}\right)$ | $\begin{aligned} & y>0: x \neq 0,-1 \times 10^{100}<\frac{1}{x} \log y<100, y=0: x>0, \\ & y<0: x=2 n+1 \text { or } \frac{1}{n}(n \neq 0, n=\text { integer }) \\ & -1 \times 10^{100}<\frac{1}{x} \log \|y\|<100 \end{aligned}$ |
| Binary | $\begin{aligned} & (+) 111111111 \geqq x \geqq 0 \\ & \text { (-) } 1111111111 \geqq x \geqq 1000000000 \end{aligned}$ |
| Octal | (+) $3777777777 \geqq x \geqq 0$ |
|  |  |
| Hexadecimal | $(+) 7 \mathrm{FFFFFFFF} \geqq 2 \geq 0$ |
|  | (-) FFFFFFFF $\geqq x \geqq 80000000$ |
| Decimal $\rightarrow$ Sexagesimal | $\|x\| \leqq 2777777.777$ Higher order digits given display priority for values exceeding 8 digits in length. |
| Statistical calculations | $\|x\|<10^{50},\|y\|<10^{50},\|n\|<10^{100}$ |

- Generally, precision for a result is $\pm 1$ at the 10th digit.
-Errors may be cumulative for sequential internal calculations with such functions as $x^{\prime \prime}, x^{\prime \prime 4}, x l, \sqrt[3]{x}$.
- In $\tan x|x| \neq 90^{\circ} \times(2 n+1),|x| \neq \frac{\pi}{2} \mathrm{rad} \times(2 n+1),|x| \neq 100 \mathrm{gra}(2 n+1)$.
$n=$ integer.
- Errors are cumulative with $\sinh x$ and $\tanh x$ when $x=0$.


## - Formulas Used for Statistical Calculations

The following formulas are used internally by the calculator for the operations noted.

## -Standard Deviation

$$
\sigma_{n}=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}}=\sqrt{\frac{\sum x^{2}-(\Sigma x)^{2} / n}{n}}
$$

Using all data of a finite population to determine the standard deviation for the entire population.

$$
\sigma_{n-1}=\sqrt{\frac{\sum_{i=1}^{\sum\left(x_{i}-\bar{x}\right)^{2}}}{n-1}}=\sqrt{\frac{\sum x^{2}-\left(\sum x\right)^{2} / n}{n-1}}
$$

Using sample data for a population to determine the standard deviation for the entire population.

## - Mean

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}=\frac{\sum x}{n}
$$

## - Regression

Regression formula: $y=A+B x$
Constant term $A$ and regression coefficient $B$ are calculated using the following formulas.

Regression coefficient of regression formula

$$
\mathrm{B}=\frac{n \cdot \Sigma x y-\Sigma x \cdot \Sigma y}{n \cdot \Sigma x^{2}-(\Sigma x)^{2}}
$$

Constant term of regression formula

$$
\mathrm{A}=\frac{\Sigma y-\mathrm{B} \cdot \Sigma x}{n}
$$

Estimated values $\hat{x}$ and $\hat{y}$ are calculated using the regression formula.
The correlation coefficient $r$ for input data is calculated using the following formula.

$$
r=\frac{n \cdot \Sigma x y-\Sigma x \cdot \Sigma y}{\sqrt{\left\{n \cdot \Sigma x^{2}-(\Sigma x)^{2}\right\}\left\{n \cdot \Sigma y^{2}-(\Sigma y)^{2}\right\}}}
$$

## Specifications

## Computations

Basic computation functions: Negative numbers, exponents, parenthetical addition/ subtraction/multiplication/division (with priority sequence judgement function - true algebraic logic).

## Built-in functions:

Statistical computation functions:

Trigonometric/inverse trigonometric functions (units of angular measurement: degrees, radians, grads), hyperbolic/inverse hyperbolic functions (fx-5000F); logarithmic/ exponential functions, reciprocals, factorials; square roots, cube roots, powers, roots, squares, decimalsexagesimal conversions, binary-octal-hexadecimal conversions/computations, $\pi$, random numbers, absolúte values.

Standard deviation - number of data, sum, sum of squares, mean, standard deviation (two types)
Linear regression - number of data, sum of $x$, sum of $y$, sum of squares of $x$, sum of squares of $y$, mean of $x$, mean of $y$, standard deviation of $x$ (two types), standard deviation of $y$ (two types), constant term, regression coefficient, correlation coefficient, estimated value of $x$, estimated value of $y$.

## Number of built-in formulas: <br> 128

Memories:

Computation range:

Rounding:

## Formula memory

Number of steps:
Number of stored formulas:
Check function:

Formula - 16
Constant - 10
$\pm 1 \times 10^{-99} \sim \pm 9.999999999 \times 10^{99}$ and 0.
Internal operation uses 12 -digit mantissa.
Performed according to the specified number of significant digits or the number of specified decimal places.

12 maximum ( P 0 to PB )
Formula checking, debugging, deletion, addition, etc.

Display system and contents: 2 line liquid crystal display (upper line: 14 -digit dot matrix display, lower line: 2-digit dot matrix display and 10-digit mantissa plus 2 -digit exponent), binary, octal, hexadecimal display, sexagesimal display, condition displays
 $x^{n}$, hyp, d, h, b, o, Fix, Sci)

## Error check function:

## Power supply:

Power comsumption:
Battery life:
Auto power off:
Checks for values exceeding $10^{100}$ and illogical computations; error messages displayed.
Two lithium batteries (CR2032)
0.008 W

Approximately 790 hours on type CR2032.
Power is automatically switched off approximately 6 minutes after last operation.
Ambient temperature range:
Dimensions:

Weight:
$0^{\circ} \mathrm{C}-40^{\circ} \mathrm{C} \cdot\left(32^{\circ} \mathrm{F}-104^{\circ} \mathrm{F}\right)$
$\mathrm{fx}-1000 \mathrm{~F}: 16.5 \mathrm{mmH} \times 72 \mathrm{mmW} \times 131 \mathrm{mmD}$ ( $5 / 8^{\prime \prime} \mathrm{H} \times 2^{7} / \mathrm{s}^{\prime \prime} \mathrm{W} \times 5^{1} / 8^{\prime \prime} \mathrm{D}$ )
$\mathrm{fx}-5000 \mathrm{~F}: 9.2 \mathrm{mmH} \times 72 \mathrm{mmW} \times 131 \mathrm{mmD}$ ( $3 / \mathrm{s}^{\prime \prime} \mathrm{H} \times 2^{\left.7 / \mathrm{s}^{\prime} \mathrm{W} \times 5^{1} / \mathrm{s}^{\prime \prime} \mathrm{D}\right)}$
fx-1000F: 99 g ( 3.5 oz ) including batteries
$\mathrm{fx}-5000 \mathrm{~F}$ : 93 g ( 3.30 z ) including batteries

## This file has been downloaded from:

## www.UsersManualGuide.com

User Manual and User Guide for many equipments like mobile phones, photo cameras, monther board, monitors, software, tv, dvd, and othes..
Manual users, user manuals, user guide manual, owners manual, instruction manual, manual owner, manual owner's, manual guide, manual operation, operating manual, user's manual, operating instructions, manual operators, manual operator, manual product,
documentation manual, user maintenance, brochure, user reference, pdf manual


[^0]:    $Y X=2 \pi f C-1 / 2 \pi f L$
    $Y X=3.100086445-03$

[^1]:    AC 124 ( MLD
    (Recall Module (2).)

    6 ExE
    (Enter value for P.)

