CASIO.

CASIO COMPUTER CO.,LTD.

6-1, Nishi-Shinjuku 2-chome Shinjuku-ku, Tokyo 163-02, Japan

NOTICE

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential in stallation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmfu interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
-Reorient or relocate the receiving antenna.

- Increase the separation between the equipment and receiver
-Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

FCC WARNING

Changes or modifications not expressly approved by the party responsible for com pliance could void the user's authority to operate the equipment.
Proper connectors must be used for connection to host computer and/or peripherals in order to meet FCC emission limits.
Connector SB-62 Power Graphic Unit to Power Graphic Unit
Connector FA-121 Ver 2.0 Power Graphic Unit to PC for IBM/Macintosh Machine

IBM is a registered trademark of International Business Machines Corporation. Macintosh is a registered trademark of Apple Computer, Inc.

Welcome to the world of Graphing Calculators and the CASIO fx-7700GE.
Quick-Start is not a complete tutorial, but it will take you through many of the most common functions, from turning the power on through graphing complex equations. When you're done, you'll have mastered the basic operation of the fx - 7700 GE and will be ready to proceed with the rest of this manual to learn the entire spectrum of functions the $f x-7700 \mathrm{GE}$ can perform.
Each step of every example is shown graphically to help you follow along quickly and easily. For example, when you need to enter the number 57, we've indicated it as follows:
\square
Whenever necessary, we've included samples of what your screen should look like. If you find that your screen doesn't match the sample, or in fact you need to start over for any reason, you can do so by pressing the "All Clear" button. $\mathrm{AC}^{\text {/NN }}$

POWER ON/OFF

To turn your unit on, press $\mathrm{AC}^{\mathbf{o N}}$
To turn your unit off, press shit off

NOTE: Your unit will automatically shut itself off after six minutes of inactivity.

ADJUSTING THE CONTRAST

1. Press MENU
2. User (ब) (D)
to select the CONT icon, and press EXE The following
screen will appear:
3. Press Θ tolighten screen or \oplus to darken screen.
4. Press MENG to clear the screen:

Quick-Start

Grouping within an equation

You can also group certain operations within your equation using the parentheses keys.

\square
EXAMPLE: $15 \times(3+61)$:

The following screen will appear:

Note that your previous calculation remains on the screen. The new calculation is displayed beneath it for easy comparison

Now let's try a variation on that problem by positioning the parentheses differently.
EXAMPLE: $(15 \times 3)+61$

The following screen will appear:

As you can see, the fx-7700GE displays all three problems simultaneously.

USING BUILT-IN VALUES

The fx-7700GE features several convenient built-in functions and values that you can enter into your equations quickly and easily.

EXAMPLE: $25 \times$ sine of 45 (In Deg mode)

1. Press $\mathrm{AO}^{\mathbf{o w}}$
2. Press

3. Press EXE and the
answer will appear on the screen as follows:
```
25win 45
    17.67766953
```


Using the Replay feature

With the replay feature, you can go back in and change any part of your equation at any time, even after the fx-7700GE computes the answer, without having to rewrite the entire equation. We'll use the previous equation as an example. Let's say you need to change the sine of 45 to sine of 55 , but everything else in the equation remains the same.

1. Press (This will bring you back into the equation.
2. Press \circlearrowleft twice so the flashing cursor is on the 4 .
3. Press 5 to overwite a 5 .
4. Press EXE and the
fx-7700GE will quickly recompute the new solution:

Quick-Start

FRACTIONS

The fx-7700GE makes it easy to work with fractions with its fraction key. ab/c On screen, the symbol is entered between each value of the fraction. For example, $115 / 16$ would appear as 1. 15

EXAMPLE: $115 / 16+{ }^{37} / 9$

1. Press $A C^{/ 0 N}$

The answer will appear on the screen as follows:

$$
1\lrcorner 15 \ldots 16+5 T_{4} \frac{7}{6}+144
$$

Converting the answer to a decimal equivalent

With the answer still on your screen,

1. Press EXE ab and the decimal equivalent of your answer (E.G4E611111) will appear on the screen.

Converting the answer to an improper fraction

With the answer still on your screen,

1. Press EXE SHIF a a a a your answer (87 A 144) will appear on the screen in the form of an improper fraction.

EXPONENTIALS

Exponentials are another function the fx-7700GE can perform quickly and easily.
EXAMPLE: 1250×2.06^{5}

1. Press $A C^{2 / N}$
2. Press 1020

3. Now you are ready to enter the exponent value. Press the exponent key \wedge and \times will appear on the screen. The number directly preceding the x, in this case 2.06, is the base number.
4. Press 5 The number 5 now appears after the A symbol, and represents the exponential value.
5. Press EXE and the answer will appear on the screen as follows:
$1250 \times 2.66 \times 5$
46376629

Quick-Start

GRAPHING

The fx-7700GE has the ability to present graphic solutions to a variety of complex equations. Before drawing a graph, be sure to first specify the graph type.

Specifying the graph type

1. Select the COMP (computation) mode.
2. Press SHIFT MENS

The following screen will appear:
3. Press F1 to specify the

REC mode for drawing of a rectangular coordinate graph.
4. Press EXIT to return to the previous screen.
\#F EFFHFH TYFE:FEC
DFFOU TEPE $5=0$
A-DSFTCFTM-DF

Graphing a built-in function

The fx-7700GE can quickly create a graph of one of its built-in values or functions.
EXAMPLE: $y=\sin x$
5. Press Graph

6 . Press \sin (x is assumed)
7. Press EXE and the
following graph will appear:

Quick-Stort

Returning to the equation

If you find that you need to return to your equation to change or replace certain values, you can do so simply by pressing the
Graph-Text toggle key. $G \leftrightarrow T$
The fx-7700GE has two separate areas of its memory: one for your formula, the other for graphs.

1. Press $B \leftrightarrow T$ once to see the equation, then again to see the graph

Trace function

The trace function lets you select an exact point on the graph and display the coordinates of that point.

1. With the graph still on your screen, press F .

The following screen

Notice thatia cursor has appeared at the left-most point on the X axis and its coordinates have appeared at the bottom of the screen. Move the cursor to the right by pressing the Θ key, then back to the left using the- (4) key. Pressing the button once will move the cursor one point, while holding it down will cause continuous movement: (The values may be approximated due to the space limitations of the screen.)

2. Press	Coord
	Fo view the fullivalue of the X coordinate in
unabbreviated form.	

Quick-Start

Scrolling in four directions

1. Pressing any arrow key lets you scroll to see different sections of your graph.

Returning to your original graph

After scrolling, you needn't retrace your steps to get back to your original graph. You can do it quickly and easily using the function keys (F keys) to enter a selection from one of the many FUNCTION MENUS the fx-7700GE employs. A function menu is a group of up to 6 functions that are displayed across the bottom of the screen. To select one of the choices, press the corresponding F key.
2. Using the
key, scroll so the Y axis is at the leff of the screen.
3. Press Foom Fe and the
following screen will appear:

The first five function keys in the function menu each correspond to one of the five boxes along the bottom of the screen: (The sixth function key is inactive in this instance:) The one we'll concern ourselves with now is F5 which corresponds to DFig (original) on the screen.
4. Press FS to bring you back to your original graph:

Zoom function

Another of the powerful graphing features of the fx-7700GE is zooming. This allows you to enlarge a portion of your graph for detailed analysis; or zoom out for a broader view.

Zooming in

1. Press F3 which corresponds to the xF box on the screen, to zoom in on your graph. The screen will now show a view that is enlarged by a predetermined factor. (Later in the manual, you'll learn' how to set your own factor of
 enlargement or reduction.)
2. Press F 5 to return to your original graph.

Zooming out

3. Press F4 which
corresponds to x on the screen, to zoom away from the graph. The screen should now-look like this:

Quick-Start

Using the Box function to zoom

This function lets you define any portion of the screen and magnify it for further analysis.,

1. Press F2 to display the zoom function menu.
2. Press F1 which corresponds to EOW on the screen.

The following screen will appear:
Notice that the blinking cursor is at the origin.

3. Using the arrow keys; move the cursor to a spot which will define one corner of the area, or "box," you wish to zoom in on.

4. Press EXE to "anchor" the cursor, creating the first corner of the box. Now, use the arrow keys to draw a box over the area you wish to enlarge.
5. Press EXE and the area you defined will enlarge to fill the entire screen.
6. Press
to display the zoom function menu.
7. Press
twice to clear the zoom function menu.

INTEGRATION GRAPH

Setting the mode

1. Press SHIT MENU F1 to specify the REC mode for drawing of a rectangular coordinate graph, and then press

Setting the range

Before graphing an integral, you need to define the range of each axis by setting its maximum and minimum value. You also need to set the scale by which each axis will be divided: This is done as follows:
2. Press
$A C^{00}$
3. Press
Fange
to display the range input screen.
4. Set the \%min range to -5 by pressing,

Press- EXE and -5 will overwrite the existing value and move the cursor to the next value.
6. Set the $X=61$ (scale) to 5 by pressing 5 EXE
7. Set the Y miri range to -8 by pressing -8 EXE
$\begin{array}{ll}\text { 8. Set the } Y \text { max range to } 8 \text { by pressing } & \mathbf{8} \text { EXE } \\ \text { 9. Set the } Y=01 & \text { (scale) to } 5 \text { by pressing } 5 \text { EXE }\end{array}$
The following screen will appear:
This second range screen is sometimes needed to set additional values. However, since none are necessary for this example, press Fange to bypass the screen.
Fiarme
Fiarme
T:t
T:t
mif!9.
mif!9.
mex:SED,
mex:SED,
Ftcmas:G
Ftcmas:G
TNHIT TRig
TNHIT TRig

Quick-Start

Quick-Start

Creating the graph

An integration graph is just one of many types of graphs the fx-7700GE can generate in just a few keystrokes.

Setting the mode (In Rad mode)

1. Press SHiFI 1 F2. EXE SHIFT MENU FO
to specify the POL mode for drawing of a polar coordinate graph, and then press Exit ExIT

Selting the range

2. Press $A C^{/ 0 N}$
3. Set the range parameters to match the following screen.
Remember to press EXE after each value to move the cursor to the next field. If you have trouble, refer back to page Xill.

Rimbe

Kmine 12 .
masit.
3012
Yminios.
mase。
E01:2.
InIT TTRG

Creating the graph

EXAMPLE: \quad| $y>x^{2}-5 x-5$ |
| :--- |
| |
| $y<x-2$ |

INPUIIING FUNCTIONS AND DRAWNG GRAPHS

With the fx -7700GE, you first input the function of the graph, and then draw the graph using the function. Be sure to always specify the graph type before inputting the function.

EXAMPLE: $\quad y=2 x^{2}-3$

Inputting the function

1. Select the GRAPH mode.
2. Press SHIFT MENU FT to specify the REC mode for drawing of a rectangular coordinate graph, and then press ExIT

3. Press F1 F6.

The following screen will appear:

```
GRAFH FLHLOAEET
Y1022*-5
YZ
Y:
Y4
Y:%
STD FCL TVF: EEL IPFIN
```


Setting the range

5. Press $\mathbf{A C}^{\text {riN }}$
6. Set the range parameters to match the following screen.

Remember to press EXE after each value to move the cursor to the next field: When the second range screen appears, press ;Range to bypass it, as again it is unnecessary for this example.

```
Fimpe
```



```
    musc:5.
    EE1:1"
    Mima-5
    maz:a,
    SE1:1.
IIHIT TFRIG
```


Quick-Start

Drawing the graph of the function

7. Press FG

The graph will appear on the screen as follows:

If you've completed this Quick-Start section, you are well on your way to becoming an expert user of the CASIO fx-7700GE PowerGraphic Calculator:

To learn all about the many powerful features of the $f x$ - 7700 GE , read on and explore!

गOWER GRAPHIC $f x-7700 G E$

Handling Precautions 8
About This Manual. 9
Chapter 1 Getting Acquainted 11
1-1 Keys and Their Functions 12
The Keyboard 13
Key Operations 13
1-2 Modes. 18
Set Up Displays 19
About Function Key Icons 22
1-3 Basic Set Up 23
To Specify the Unit of Angular Measurement 23
To Specify the Number of Decimal Places 23
To Specify the Number of Significant Digits 24
To Specify the Display Format 25
To Specify the Engineering Mode 26
1-4 Basic Operation 27
Using the Clear Menu 27
Inputting Calculations 28
Editing Calculations 28
Answer Function30
Using Multistatements 30
Multiplication Operations without a Multiplication Sign. 31
Performing Continuous Calculations 32
Using the Replay Function 32
Built-in Scientific Functions36
Value Memories 36
Increasing the Number of Value Memories 37
39
1-5 Using the Function Memory 39
VAR (Variable) Menu 41
1-6 Using the BASE Mode 44
1-7 Graphic and Text Displays 47
1-8 Technical Information 47
Calculation Priority Sequence 47
Stacks 48
Value Input and Output Limitations 49
Input Capacity 50
Overflow and Errors 50
Exponential Display 51
Calculation Execution Display 52
When Errors Keep Occurring 52
Chapter 2 Manual Calculations 53
2-1 Arithmetic Calculations 54
Calculations Using Parentheses 55
2-2 Units of Angular Measurement 56
2-3 Trigonometric and Inverse Trigonometric Functions 56
2-4 Logarithmic and Exponential Functions 57
2.5 Hyperbolic and Inverse Hyperbolic Functions 58
2-6 Other Functions 59
2-7 Coordinate Conversion 60
2:8 Permutation and Combination 61
2-9 Fractions 62
2-10 Engineering Symbol Calculations 63
2-11 Number of Decimal Places; Number of
Significant Digits, Displày Forihat 64
2-12 Calculations Using Memory 65
2-13 BASE Mode Calculations 66
Conversions 66
Negative Values. 66
Arithmetic Operations: 66
Logical Operations 67
Chapter 3 Differential and Integration Calculations 69
3-1 How the Unit Calculates Differentials 70
To Perform a Differential Calculation 71
Applications of Differential Calculations 72
3-2 How the Unit Calculates Integrations 73
To Perform an Integration Calculation 74
Application of Integration Calculation 75
Chapter 4 Statistical Calculations 77
4-1 Single-Variable Statistical Calculations 78
To Enter the Standard Deviation Mode without Data Storage 78
To Enter the Standard Deviation Mode with Data Storage 80
Performing Single-Variable Calculations 83
4-2 Paired-Variable Statistical Calculations 85
To Enter the Regression Mode without Data Storage 85
To Enter the Linear Regression Mode 85
To Enter the Logarithmic Regression Mode 86
To Enter the Exponential Regression Mode 87
To Enter the Power Regression Mode 88
To Enter the Regression Mode with Data Storage 88
Performing Paired-Variable Calculations 90
4-3 Things to Remember during 'statistical Calculations 91
4-4 Examples of Statistical Calculations 91
Linear Regression 9
Logarithmic Regression 94
95
Exponential Regre
Power Regression 96
Chapter 5 Using the Matrix Mode 97
5-1 Before Performing Matrix Calculations 98
To Enter the Matrix Mode 98
Matrix List. 99
Matrix Input 99
Deleting Matrices 102
5-2 Modifying a Matrix 103
Before Modifying a Matrix 103
Row Operations 104
Modifying the Contents of Matrix 106
Deleting, Inserting, and Adding Rows 107
Deleting, Inserting, and Adding Columns 110
5-3 Matrix Calculations 113
Arithmetic Operations 113
Calculating a Scalar Product 116
Determinants 118
Transposing a Matrix 119
Inverting a Matrix 121
Squaring a Matrix 122
5-4 Matrix Operation Precautions 124
Chapter 6 Equation Calculations 125
6-1 Before Beginning an Equation Calculation 126
To Enter an Equation Calculation Mode 126
To Clear the Equation Memories 127
6-2 Linear Equations with Two Unknowns 127
To Enter the Linear Equation Mode for Two Unknowns 127
To Solve a Linear Equation with Two Unknowns 128
6-3 Linear Equations with Three Unknowns 129
To Enter the Linear Equation Mode for Three Unknown 129
To Solve a Linear Equation with Three Unknowns 129
6-4 Quadratic Equations 130
To Enter tha Quadratic Equation Mode 131
To Solve a Quadratic Equation 131
Quadratic Equations That Produce Single-Value Solutions or Imaginary Number solutions132
Changing Coefficients 133
To Clear All the Coefficients 13
What to Do When an Error Occurs 133
Chapter 7 Graphing 135
7-1 About the Graphing Function 136
Specifying the Range of a Graph 136
Initializing the Range Parameter Display Settings 140
7-2 Rectangular Coordinate Graphs 141
Graphing Bụilt-in Scientific Functions 141
Overdrawing Built-in Function Graphs 142
Graphing Manually Entered Functions 143
Overdrawing Manually Input Graphs 144
Specifying the Value Range 144
7-3 Polar Coordinate Graphs 145
Graphing Built-in Scientific Functions 145
Graphing Manually Entered Functions 146
Specifying the Value Range 147
7-4 Parametric Graphs 148
Specifying the Value Range. 149
7-5 Inequality Graphs 150
Overdrawing Inequality Graphs 151
Specitying the Value Range 152
7-6. Integration Graphs 153
7-7 Probability Distribution Graphs 154
7-8 Single-Variable Statistical Graphs 156
7-9 Paired-Variable Statistical Graphs 159
7-10 Storing Functions in Memory 161
To Access the Graphic Function Memory 161
Function Types 162
Editing Functions in Memory 166
Drawing Graphs from Memory 168
7-11 Other Graph Functions 169
Setting the Type of Graphing Method 169
Trace Function 170
Scrolling Graphs 174
Notes on Using the Trace Function 175
Plot Function 175
Line Function 180
Graph Scroll Function 183
Zoom Functions 185
Box Function 85
Using the Factor Function to Enlarge
and Reduce the Entire Graph 187
Using the Overwrite Function. 193
7-12 Some Graphing Examples 195
Chapter 8 IProgramming 199
8-1 Introduction to Programming 200
To Enter the Programming Mode 200
Specifying the Calculation Mode 200
Selecting a Program Area 201
Checking How Much Memory ls Used by Program 202
To Input a Program 202
To Execute a Program Stored in Memory: 203
8-2 Deleting Programs 205
8-3 About Error Messages 205
B-4 Counting the Number of Bytes 206
To Check the Amount of Memory Remaining 206
To Check Where the Cursor Is Currently Located 206
8-5 Program Commands 207
To Display the Program Function Menu 207
About the Newline Function 207
To Display the Jump Command Menu208
To Display the Relational Operator Menu 208
To Display the Punctuation Symbol Menu 209
8-6 Using Jump Commands 20
About Unconditional Jumps 209 Appendix
About Conditional Jumps 211
About Count Jumps 212
8-7 Using Subroutines 213
Subroutines Save Memory 214 Appendix D
8-8 Using Array Memory
Array Memories Simplify Programming 215 Appendix F
Cautions When Using Array Memories 216
Sample Programs That Use Array Memory 216 Index218
-9 Displaying Text Messages 219 Key Index
221
8-1.1 Using the Graph Function in Programs
223
Chapter 9 Data Communications 224
9-1 Connecting Two fx-7700GE Units 224
To Connect Two fx-7700GE Units 224
9-2 Connecting the $\mathrm{fx}-7700 \mathrm{GE}$ with a Personal Computer 225
To Connect the $\mathrm{fx}-7700 \mathrm{GE}$ with a Personal Computer 225
9-3 Before Starting Data Communications 226
To Enter the LINKMode 226
About the Data Type Selection Screen 226
9-4 Setting Communications Parameters 228
To Set fx-7700GE parameters 228
9-5 Using ALL to Send All Data 229
9-6 Using PROGRAM to Send Program Data 231
234
9-8 Using MATRIX to Send Matrix Memory Data 236214 Appendix
9-9 Using STATISTICS to Send Statistical Memory Data 239
9-10 Using VARIABLE MEM to Send Value Memory Data 241
9-11 Using RANGE to Send Graph Range Parameters: 245
9-12 Using FACTOR to Send Gräph Range Parameters 247
9-13 Using GRAPH FUNCTION to Send Graph Function Memory Data 248
9-14 Using: EQUATION to Send Equation Data 251
9-15 Using BACK UP to Send All Mode Settings and Memory Data 253
-16 Screen Copy Function 255
To Copy the Screen 255
9-17 Data Communications Precautions 255
Appendix 257
Appendix.
Appendix A Power Supply 257
When to Replace Batteries 258
Replacing Batteries 258
About the Auto Power Off Function 261
To Reset the Calculator 261
Function Reference 263
Manual Calculations 263
Program Calculations 267
Error Message Table 269
nput Ranges
74
Specifications 274

Handling Precautions

- Your calculator is made up of precision components. Never try to take it apart. -Avoid dropping your calculator and subjecting it to other strong impacts.
-Do not store the calculator or leave it in areas exposed to high temperatures or humidity, or large amounts of dust. When exposed to low temperatures, the calculator may require more time to display results and may even fail to operate. Correct operation will resume once the calculator is brought back to normal temperature.
- The display will go blank and keys will not operate during calculations. When you are operating the keyboard, be sure to watch the display to make sure that all your key operations are being.performed correctly.
- Replace batteries once every. 2 years regardless of how much the calculator is used during that period. Never leave dead batteries in the battery compartment. They can leak and damage the unit.
- Avoid using volatile liquids such as thinner or benzine to clean the unit. Wipe it with a soft, dry cloth, or with a cloth that hass been dipped in a solution of water and a neutral detergent and wrung out.
- In no event will the manufacturer and its suppliers be liable to you or any other person for any damages, expenses, lost profits, losi savings or any other damages árising out of loss of data and/or formulas arising out of malfunction, repairs, or battery replacement. The user should prepare physical records of data to protect against such data loss.
- Néver dispose of batteries, the liquid crystal panel, or other components by burning them.
-When the "Low battery" message appears on the display, replace the main power supply batteries as soon as possible.
- Be sure that the power switch is set to OFF when replacing batteries.
-If the calculator is exposed to a strong electrostatic charge; its memory contents may be damaged or the keys may stop working. In suç a case, perform the All Reset opera. tion to clear the memory and restore normal key operation.
- Note that strong vibration or impact during program execution can cause execution to stop or can damage the calculator's memory contents.
- Using the calculator near a television or radio can cause interference with TV or radio reception.
- Before assuming malfunction of the unit, be sure to carefully reread this manual and ensure that the problem is not due to insufficient battery power, programming or operational errors.

Important

In no event shall CASIO Computer Co., Ltd. be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the purchase or use of these materials. Moreover, CASIO Computer Co., Lid. shall not be liable for any claim of any kind whatsoever against the use of these materials by any other party.

[^0]
About This Manual.....

This manual is divided into chapters to help you find the operation you want quickly and easily.

Chapter 1 Getting Acquainted

This chapter gives you a general introduction to the various capabilities of the unit. It contains important information about the unit, so you should be sure to read it before starting operation.

Chapter 2 Manual Calculations

Manual calculations are those that you input manually, as on the simplest of calculators. This chapter provides various examples to help you become familiar with the manual calculations.

Chapter 3 Differential and Integration Calculations

Chapter 4 Statistical Calculations

This chapter tells you how to perform single-variable statistical calculations using standard deviation, and paired-variable statistical calculations using regression. No matter what type of statistical calculations you decide to perform, you can tell the unit to either store he statistical data or not to store the data.

Chapter 5 Using the Matrix Mode

This chapter tells you how to perform the calculations with five variable matrices (Mat A through Mat E) and a special matrix answer memory (Mat Ans).

Chapter 6 Equation Calculation

This chapter explains how to solve linear equations with two or three unknowns, and how to solve quadratic equations.
Chapter 7 Graphing
This chapter explains everything you need to know to fully use the versatile graphing capabilities of the unit.

Chapter 8 Programming

This chapter tells you how to use the program memory of the unit. Once you program a calculation, you can call it up and execute it using any values you want at the touch of a key

Chapter 9 Data Communications

This chapter tells you everything you need to know to transier programs between the fx-7700GE and another CASIO Power Graphic unit or between your fx -7700GE and a personal computer.

Appendix

The appendix confains information on battery replacement, error messages, specifications, and other technical details.

Reset your calculator before using it for the first time! See page 261 for details on the reset procedure.

Be sure to keep physical records of all important datal.
The large memory capacity of the unit makes it possible to store large amounts of data. You should note, however, that low battery power or incorrect replacement of the batteries that power the unit can cause the data stored in memory to be corrupted or even lost entirely. Stored data can also be affected by strong electrostatic charge or strong impact.

Getting Acquainted

1-1 Keys and Their Functions
1-2 Modes
1-3 Basic Set Up
1-4 Basic Operation
1-5 Using the Function Memory
1-6 Using the BASE Mode
1-7 Graphic and Text Displays
1-8 Technical Information

The Keyboard

Many of the unit's keys are used to perform more than one function: The functions marked on the keyboard are color coded to help you find the one you need quickly and easily.

$$
\begin{aligned}
& \text { Shifted function (orange) }-10^{x} \mathbf{B}-\text { Alpha function (red) } \\
& \text { Primary function - } \log \quad
\end{aligned}
$$

Also note that green markings show the names of menus that appear when the ginim is pressed.

- Primary Function

These are the functions that are normally executed when you press the key.

- Shifted Functions

You can execute these functions by first pressing the serman key, followed by the key that is assigned the shifted function you want to execute.

- Alpha Functions

An alpha function is actually the simple input of an alphabetic letter. Press the Nown key, followed by the key that is assigned the letter you want to input.

Alpha Lock

Normally, once you press (1040 and then a key to input an alphabetic character, the keyboard reverts to its primary functions immediately. If you press sinif and then smin, the keyboard locks in alpha input until you press asin again.
Also note that green markings show the names of menus that appear when the smint is pressed.

■Key Operations

F1- F (race Function Keys

Use these keys to select the functions indicated above them on the display
-After drawing a graph, use these keys to access the built in graphic functions marked above them on the panel.

SHIFT] Shift Key

Press this key to shift the keyboard and access the functions marked in orange (or green).
The s indicator on the display indicates that the keyboard is shifted. Pressing (5and again unshifts the keyboard and clears the s indicator from the display.
This key is also used during display of a Mode Menu to advance to the next Mode Menu screen.

Lock
 Alphal Alpha Key

Press this key to input a letter marked in red on the keyboard.
Press this key following 페N to lock the keyboard into alphabetic character input. To return to normal input, press "Naxatain.
－Press this key following shm to input variables for integration calculations
－Press this key to back step through displays，from a display reached by pressing func tion keys．
－Pressing this key while a calculation result is displayed switches to the cisplay from whict
the function was selected to perform the calculation．
Press this key following 着做 to enter the letter A ．
the function was selected to perform the calculation．

－Press this key and then enter a value to calculate the common logarithm of the value
mode you are currently in．

SET UP
 nivio Menu／Set Up Key

－Press this key to display the Main Menu．
－Press［5nT］
－Press this key following fixi to enter the letter B ．

＊in Natural Logasthmm／Exponenitial key

－Press this key and then enter a value to calculate the natural：logarithm of the value．
 display．

（1）$\stackrel{\text { REPLAY }}{ }$ Cursor／Replay Keys

－Press this key following（1）to enter the letter C ．
－Use these keys to move the cursor on the display：
Sin es
（国
－Press this key and then enter a value to calculate the sine of the value．＇ －Press this key following 应㖡 to enter the letter D．
－Use these keys to move the cursor on the display．
the calculation from the end，or Φ to display it from the beginning You can then exe press this key and then enter a value to calculate the cosine of the value． cute the calculation again，or edit the calculation and then execute it．See page 32 fo．Press this key following timiti to enter the letter E－ E ， details on the Replay Function．

－Press this key to switch between the graphic display and text display
－Press this key following sing when you want to draw an integration graph．
－Press this key and then enter a value to calculate，the tangent of the value．
－Press this key following way to enter the letter $F, 7$
北国困
－Perform this operation and then enter a value to calculate the inverse sine of the value． ［54HF｜［00］
－Perform this operation and then enter a value to calculate the inverse cosine of the value．

Graph／Differential Key

－Press this key before entering a calculation formula for graphing．
－Press this key following 弗fly when you want to periorm differential calculations（page 70 －Press this key following（1）to enter the letter r ．

Range Key

－Use this key to set or check the range of a graph．
－Press this key following 四困 to enter the letter θ ．

GAPA：
 Mode Display／Screen Copy／Capacity Key

－When this key is set to function as a Mode Display Key（page 38），it can be used th check the current set up display settings．The settings remain displayed while this ke is depressed．
－Perform this operation and then enter a value to calculate the inverse tangent of the value．
${ }^{40}$

（aty fraction Key

－Use this key when entering fractions and mixed fractions．To enter the fraction 23／45，
for example，press 23囷45．To enter 2－3／4，press 2 国3 3 图 4 ．
－Press（3nir）do display an impróper fraction．
－Press this key following 组स to enter the letter G ．

［青 Square／Square：Root Key

－Enter a value and press this key to square the entered value．

－Press this key following wam to enter the leter H ．
\square
Open Parenthesis／Cube Root Key
of the current display image to a connected personal computer（page 255）．
－When this key is set to function as a Mode Display Key，press this key following \square
\square
to check the current status of the unit＇s memory capacity．The capacity remains．di played while this key is depressed．

细 XAT, A, Variable／Integration Key

－Press this key to input variables X, θ ，and T when Setting up a graph．
－Press sinn

21）Close Parenthesis／Reciprocal Key

－Press this key to enter a close parenthesis in a formula．
－Press［min $[x]$ and then enter a value to calculate the reciprocal of the value． －Press this key following nom to enter the letter J．

519ill
This key sequence displays the status of－the program，function，variable，statistic（SD and $L R$ ），and matrix memories，along with the remaining number of bytes．

Assignment／Comma Key

For full details on each menu，see the section titled＂Basic Set Up＂，＂Basic Operation＂ －Press this key before entering a value memory name to assign the result of a calculatior starting from page 23.
to the valie memory．
－Press this key following 慉直 to input a comma．
－Press this key following ank to enter the letter K．

Power／Root Key

－Enter a value for x ，press this key，and then enter a value for y to calculate x to the poweins
of y ．

－Press this key following wow to enter the letter L ．＂
－Press［anirn（iss）to display the insert cursor（ ${ }^{5}$ ？$)$ ．You can insert characters while the insert

0 © -9 ，Desm -9 Numeric Keys and Decimal Key

－Use the numeric keys to enter a value：Enter decimals using the decimal key
\qquad All Clear／ON／OFF Key
－Press this key to switch power on．
－Press this key while power is on to clear the display：
－Press this key following shrif to switch power off．

Following operic keys to enter a value．Enter decimals using the decimal key． cursor is displayed．

$\pm=x^{Y} \rightarrow$ Arithmetic Operation Keys

－Following operation of the 四key，each of the numeric keys enters the following lette

［幽相 7 enters M ．	（1）N0（1）enters U．
四相 8 enters N ．	（1）0 2 enters V ．
， 0 国 enters 0 ．	（0x） 3 enters W．
Wran 4 enters P ．	
［14040	［1］N0－enters the open bracket［
［1040 enters R．	

－Following operation of the siniry key，the menus marked in green（or orange）above thest keys are accessed．
SMIT［EMER－Function Memory Menu
This key operation displays the menu used for function memory calculations（see page 39）

［minflicg－Unit of Angular Measurement Menu

${ }^{29}$

Exponent／Pi Key

Use this key when entering a mantissa and exponent．To input 2.56×10^{34} ，for exam－ ple，enter 2.56 （बap 34 ）：1 from left to right．Press the applicable key to specify an arithmetic operation．
－You can also use the $\boldsymbol{\Psi}$ and $\boldsymbol{\square}$ keys to specify positive and negative values．
－Following operation of the wowe key，each of these keys enters the following letters．

四狍 \mathbf{X} enters S ：
 T 1 R10
 帅相 + enters X
 WNP 0 enters Y ．

 surement．
［5．
－Press this key following anaid to enter the closed bracket［
This key operation displays the menu used for specification of the display format for cal culation results．

ssinn cirs－Clear Menu

This key operation displays the menu used for clearing memory contents．
5hin warm－Built－In Function Menu
This key operation displays the meni used for specification of built－in functions and 1 engineering symbols（ k, μ ，etc．）

팩（

（－）／Answer／Space Key
－Press this key when entering a negative value．
－Press siniri and then this key to recall the most recent calculation result obtained using
the 国 key．
－Press anpo and then this key to enter a space．
\qquad

Execute／Newline Key

－Press this key to obtain the result of a calculation．You can press this key following data input，or after a result is obtained to execute the calculation again using the previous result．
This key operation displays the menu used for specification of variables used in graphicePress sump to perform a newline operation． functions．

shiff eman－Program Command Menu

This key operation displays the menu used for specification of special built－in progran functions．

1-2 Modes

You can control the operations of the unit by entering the correct mode. To select th mode you need, select the appropriate icon from the Main Menu. The Main Menu appean whenever you press the nem.

LINK Mode

Use this mode to transfer program, function, matrix, and other memory datá to another unit.

CONT Mode
Use this mode to adjust the display contrast:

PRESET

RESET Mode

Use this mode to reset the calculator to its initial parameters.

ESet Up Dispiays

Except for the LINK, CONT, and RESET modes, entering a mode causes a set up display to appear first. The set up displays show the current status of other modes that are related to the mode you entered. How a mode is set up affects the calculation results produced
The icon that is highlighted is the one that is currently selected. Use the cursor keys lin the mode.
move the highlighting around the display to select the mode that you want. To enter thThe status shown in each set up display shows initial settings that are in effect whenever highlighted mode, press the Eey.
the RESET operation (page 261) is performed.
The following explains the meaning of each iton in the Main Menu.

Use this mode for arithmetic calculations and function calculations, for drawir graphs and for executing programs.

base Mode

Use this mode for binary, octal, decimal, and hexadecimal calculations and col versions. This mode is also used for logical operations.

Use this mode for single-variable statistical calculations (standard deviation)

```
REG Mode
Use this mode for paired-variable statistical calculations (regression).
```


MAT Mode

Use this mode for matrix calculations.

ABFIFH:

Use this mode to input functions and draw their graphs

Equa Mode

Press [nind

- To change a set up

Select the COMP Mode icon and press display the set up display.

$\because F$

	GRAPH TYPE:REC DRAW TYPE:CON M-DSP/COPY: M-DP
	\cdots
	$\sqrt{\text { REC }}$ POL P PRM/ INQ
	[F1] [F2] [F3] $\mathrm{F4}$

Use this mode to solve quadratic equations, and linear equations with two or thr unkinowns.

PRGM Mode
Use this mode for writing, reading, and executing programs.

Set Up Display Function Key Menus

This section details the settings that you can make using the function keys in the set uf edit display．

－Graph Type（GRAPH TYPE）

－GRAPH TYPE：REC

$$
\text { REC POL } \text { FRM IINQ }
$$［F2］

（F3）

－Graph Drawing Type（DRAW TYPE）

```
-DRAW TYPE SCON
```

CON FLT
（Fi）
F1 (CON)
F2（PET） \qquad Coninection of plotted points
\qquad No connection of plotted points
－Statistical Data Storage（STAT DATA）

F1（STO） \qquad Storage of input statistical data into statistical data memory F2（NON） No storage of input statistical data into statistical data memon
－Statistical Graph Drawing（STAT GRAPH）
| STAT GRAPH: NON-|

DRW NON
［ 1 ］

F1（DRW）：．．．．．．．．Drawing of graph using single－variable oripaired－variable calcula－ tion results
［互（NON）．．．．．．．．．No dräwing of graph using single－variable or paired－variable cal－ culation results
－Paired－Variable Statistic Calculation（REG MODEL）
－REG MODEL LIN

FIT（LIN）．．．．．．．．．Linear regression
［［2］（LOG）．．．．．．．．．Logarithmic regression
［国（EXP）．．．．．．．．．Exponential regression
［F4（PWR）．．．．．．．．．Power regression
－Simultaneous Graphing（SIML GRAPH）

```
SIML GRAPH:OFF
```

$$
O \mathrm{ON}
$$

F1) F2

FI（ON）
Simultaneous drawing of graphs for functions stored in graph func－ tion memory
F2（OFF）．．．．．．．．．One－by－one drawing of graphs for functions stored in graph func－ tion memory
－Kalisp Key Setting（M－DSP／COPY）

［ Fl （MDS）．．．．．．．．Holding down 圆Disp key shows set up display for current mode国（COP）．．．．．．．．．Pressing 葍0isp enters a mode that makes it possible to transfer a bit pattern of the current display contents to a personal computer．

- CAL MODE : CDMP

1-3 Basic Set Up

\square To Specify the Unit of Angular Measurement
Examplef To set the unit of angular measurement as degrees
CMP-BAS $\triangle \mathbb{S D}:$ REC MAT:...

FIT(CMP) \qquad Computation Mode
\qquad Base-n Mode
[Fa(SD) Standard Deviation Móde
(FA)(REG) Regression Mode
[FS(MAT) Matrix Mode
(1)
\therefore -
$\because \therefore$

-About Function Key Icons

There are three types of function key icons that appear at the bottom of the displäy.

MATRIX Mode
F1(Mat)
\vdots
F3(Tm)

Mat Det Tin LIST SEE

Example To set the number of decimal places to 2
Silifi IISP

To To Specify the Number of Decimal Places

F1)(Deg) 0.

The relationship of the angular measurement units are:
$360^{\circ}=2 \pi$ radians $=400 \mathrm{grads}$
$90^{\circ}=\pi / 2$ radians $=100$ grads

- Press to exit the angular unit setting mode. -

This type of icon indicates that a function will be accessed (but not executed) when yo press the function key.

\square F1(Fix) 2] ExE 2

Fix

Now all displayed values will be rounded off to the nearest integer at the second decimal place.
This type of icon indicates that another menu will appear when you press the function key
Important

F5 (SEE)

This type of icon indicates that a function will be executed as soon as you press the func tion key.

The above specification is applied to the displayed value only. The calculator still stores the entire 13 -digit mantissa and 2-digit exponent of the result in memory. If you change the number of decimal places specification while a calculation result is displayed, the display changes to show the value using your new specification.

Example To perform $100 \div 7$ with 2 decimal places, and then change to 5 decimal places

$$
100 \div 7
$$

Fix Sci Nrm Ens ENG ENG
(F1)

$$
F i \times 5
$$

14. 28571

F1(Fix) 5 (ExE

SHIFT) (IISP
[F3](Nrm) ExE

Fix Bai NTm EnE ENG EENG.

Note
No matter what settings are currently being applied for the number of decimal places pressing [

Each time you press shif [isp Fa (Nrm) 国, the display format changes between Norm 1 and Norm 2. See page 51 for full details on Norm 1 and Norm-2:-
-To Specify the Number of Significant Digits
Example To set the number of significant digits to 3 :
\qquad Fix: Sci Nim Ens ENG EENG

Important

The above specification is applied to the displayed value only. The calculator still stores the entire 13 -digit mantissa and 2 -digit exponent of the result in memory. If you change the display format specification while a calculation resuit is displayed, the display changes

Fa)
Example To perform $1 \div 200$ with Norm 1, and then change to Norm 2
[F2] (Sci) [3 ㅈxㄹ

Sci 3

0. $00 E+00$

$$
\sqrt{1 \div 200} \quad 5 . \mathrm{E}-03
$$

Norm 1
Now all displayed values will be shown with 3 significant digits.

Important

Norm . . O. OOD

The above specification is applied to the displayed value only. The calculator still store: the entire 13 -digit mantissa and 2 -digit exponent of the result in memory. If you chang the number of significant digits specification while a calculation result is displayed, th display changes to show the value using your new specification.

Narm:2
.

Example To perform 123×456 with 3 significant digits, and then change to 4 sig nificant digits

[F2(Sci) 4 医
$123 \times 4565.61 \mathrm{E}+04$

Fix Ecil Nrm Eng ENG ENG
Eng)
 Press-Exil to exil the engineering mode setting mode.

Note

No matter what settings are currently being applied for the number of significant digits

$$
-24-
$$

1-4 Basic Operation

The above specification is applied to the displayed value only. The calculator still store The operations described here are fundamental calculations that you need to get.started the entire 13 -digit.mantissa and 2 -digit exponent of the result in memory. If you chang with the unit. Graphing, programming, and statistical calculations are covered in their own the engineering mode specification while a calculation result is displayed, the displa separate sections.

changes to show the value using your new specification.

Using the Clear Menu
-1:
\qquad
Example To perform 1-500 in Norm 1, and then change to the Engineerin
The Clear Menu lets you clear either the entire memory of the unit or specific parts of Mode
the memory.
Important
-The procedures described below cannot be undone. Make sure inat you do not need

(F4)(Eng)匡

F4 (Eng) 鳥

Eng

- To clear the entire memory

[Fi]
Mc I :
(Ff (Mcl) 틑
data any more before you delete it.
- You can call up the Clear Menu while the unit is in any mode.

To Adjust the Contrast of the Display
Highlight the CONT icon on the Main Menu.

(4) make the screen lighter
© to make the screen darker Lunv to return to the Main Menu

Important

If the display remains dim even when you adjust the contrast, you should replace batte ies as soon as possible.

This operation clears all of the value memories, as well as' any values assigned to r, θ, and variables.

- To clear statistical memories only

F2(Scl) 질

ScI
0.

- This operation clears any values assigned to $\Sigma x^{2}, \Sigma x, n, \Sigma y^{2}, \Sigma y$, and $\Sigma x y^{2}$, - In the case of single-variable statistics. (SD Mode), if the statistical graph drawing type (STAT GRAPH) is set to "DRAW," the clear operation clears bar graph memory θ. -Press tim to exit the memory clear mode.

－Inputting Calculations

When you are ready to input a calculation，first press AC to clear the display．Next，inpt your calculation formulas exactly as they are written，from left to right；and press 国！ obtain a result．
$\cos 60$
sin

$$
\sin \underline{\theta}
$$

Example 1 2＋3－4＋10＝

$A C 2+3-4]+1][0]$

Example $22(5+4) \div(23 \times 5)=$
Example $22(5+4) \div(23 \times 5)=$
AC 2,0$]+4 \square 7$ （1） $3: 50$ 迼

$2+3-4+10$

To delete a step

1．Example To change 369×2 to 369×2

$$
2(5+4) \div(23 \times 5)
$$

ロ．15652．17391
［3］ 6×2
（3）（0）

$$
369 \times 2
$$

The unit uses two types of functions：Type A functions and Type B functions．With Type A functions，you press the function key after you enter a value．With Type B function you press the function key first and then enter a value．

Example 1（Type A function）

Example
4^{2}

Key Operation
4 \times

To insert a step
Example To change 2.36^{2} to $\sin 2.36^{2}$

2） $36 x^{x^{2}}$
$(4)(4)$

$$
\text { 르. } 36^{2}
$$

\square

Sin
$\sin 2.36^{2}$
－For detailed examples on all of the possible calculations available，see the section title
＂Calculation Priority Sequence＂on page 47.
 value you input is inserted at the location of＂$[$＂．To abort the insert operation without

－To make corrections in the original calculation

■Editing Calculations

Use the (Φ) and $(\odot$ keys to move the cursor to the position you want to change，and thexample perform one of the operations described below．After you edit the calculation；you cas execute it by pressing 国，or use © to move to the end of the calculation and input mon
－To change a step
Example To change $\cos 60$ to $\sin 60$

cos 60＿
Press © or 0

Statements that are connected with colöns are executed from left to right，without stopping． －Display Result Command（4）

$14 \div 10 \times 2.3$

When execution reaches the end of a statement followed by a display result command execution stops and the result up to that point appears on the display．You can resume execution by pressing the 国 key．

－Newline Operation

－The last calculation performed is not cleared even when you press the AC key．This mean you can clear the display using $A C$ and then recall the calculation．
－The last calculation performed is cleared whenever you press the 国 key to select a mod in the Main Menu

－Answer Function

The unit＇s Answer Function automatically stores the last result you calculated by press ing 国（unless the 国 key operation results in an error）．The result is stored in the answe memory：
－To recall the contents of the answer memory
\qquad Ans

－To use the contents of the answer memory in acalculation
Examplë
$123+456=579$
$789-579=210$

The newline operation ends the fine you are currently inputting，and moves the cursor to the next line．When execution reaches the end of a line where a newline operation was performed，the unit．treats the end of the line like a colon（multistatement connector）
－To use multistatements

Example

$6.9 \times 123=848.7$
$123 \div 3.2=38.4375$

579.
－Note that the final result of a multistatement is always displayed，regardless of whether it ends with a display result command．
－You cannot construct a multistatement in which one statement directly uses the result 210．
－The largest value that the answer memory can hold is one with 13 digits for the mantiss and 2 digits for the exponent．
－Answer memory contents are not cleared when you press the AC key or when you switc power off．
－Note that answer memory contents are not changed by an operation that assigns value to value memory（such as：可国国国）

Using Multistatements

Multistatements．are．formed by connecting a number of individual statements for sequer tial execution．You can use multistatements in manual calculations and in programme calc̣ulations．There are three different ways that you can use to connect statements to form multistatements．

Example $123 \times 456 ; \times 5$
Invalid
Multiplication Operations without a Multiplication Sign
You can omit the multiplication sign（ x ）in any of the following operations．
Before the type B functions（page 48）and coordinate transformation functions：
Example $2 \sin 30$ ， $10 \log 1.2,2 \sqrt{3}, 2$ pol（ 5,12 ），etc．
Before constants，variable names，value memory names
\square $2 \pi, 2 A B, 3 A n s, 3 Y 1,4 \operatorname{Sim} X$ ，etc．
－Before an open parenthesis \qquad Example $3(5+6),(A+1)(B-1)$ ，etc．

- Performing Continuous Calculations

Example
The unit lets you use the result of one calculation as one of the arguments in the nex calculation. The precision of such calculations is 10 digits (for the mantissa).

Example
$3 \times 4=12$
$12 \div 3.14=3.821656051$

12.3 .14

3. 821656051

The contents of the replay memory are cleared whenever you change from one menu to another.

Continuous calculations can also be used with Type A functions (see page 47)..-

Built-in Scientific Functions

In addition to the scientific functions that you can access directly from the keyboard, this calculator also provides a selection of other build-in functions. Use the MATH Menu to

■Using the Replay Function

The Replay Function automatically stores the last calculation performedin replay memor access these built-in functions.
You can recall the contents of the replay memory by pressing Θ or θ. If you press $($
the calculation appears with the cursor at the beginning. Pressing causes the calcu To call up the MATH Menu lation to appear with the cursor at the end. You can make changes in the calculation a you wish and then execute it again.

Example To perform the following two calculations $4.12 \times 3.58+6.4=21.1496$
$4.12 \times 3.58-7.1=7.6496$
$-7] 1$
 +6] (4]

4. $12 \times 3.58+6.4$
4. $12 \times 3.58 \pm 6.4$

Press the function key to call up the sub-menu that contains the type of operation you want to periorm.

FFI(HYP) Hyperbolic Function Menu for hyperbolic and inverse hyperbalic functions
国(PRB) Probability Function Menu for factorials, permutations, combinations, and random numbers
[83(NUM) Numeric Function Menu for absolute value calculations, integer and décimal part extractions, and internal rounding
(FAMS) Sexagesimal Function Menu for degree, minute, second inputs and conversions
[Fs(COR) Coordinate Function' Menu for rectangular and polar coordinate transformations
[0 (GYM) Engineering Symbol Menu for engineering symbols .

4. $12 \times 3.58-7.1 \quad$ To use the Hyperbolic Function Menu

[医

 (F1).-The maximum capacity of the replay memory is 127 bytes.

- The contents of the replay memory are retained even if you press AC or switch power oi

Press the function key below the hyperbolic function you want to input.
[F](snh) \qquad hyperbolic sine
F2 (csh)
F3) (tnh) \qquad hyperbolic cosine
F ${ }^{3}$ (tnh) \qquad hyperbolic tangent
(Sn/-1) \qquad inverse hyperbolic sine F5 $\left(\operatorname{csh}^{-1}\right)$ \qquad inverse hyperbolic cosine
F6) (tnh $^{-1}$ \qquad inverse hyperbolic tangent
-Press Exit to back step to the MATH Menu.

- To use the Probability Function Menu

F2(PRB)

Press the function key below the probability function you want to input.

F1 (x I)

\qquad factorial of x

- \qquad permutation
F3($n \mathrm{Cr}$) \qquad combination
(बas) (Rn) raindom number generation
-Press EITI to back step to the MATH Menu.
HYP PRE NUW GMS CDF SYM F2

 [F1] [F2] [F3] [F4]

- To use the Sexagesimal Function Menu

HYP PRE NUM CME COP SYM F1] F2] F4] F5] F6]
$0 \cdot \sqrt{\square श 川}$
F1 F2
Press the function key below the sexagesimal function you want to input. :7y [F] $(0, n)$............... For input of hours, minutes and seconds, or degrees, minutes
[F2($0^{\prime, n}$) For input of hours; minutes and seconds; or degrees; minutes and seconds as decimal values
-Press Eaif to back step to the MATH Menu.

- To use the Coordinate Function Menu

F5(COR)

(F1) F2]
- To use the Numeric Function Menu

-

[F7]: [F2] [F3] $[$ F4] $F 5:$

\qquad . below the coordinate function you want to input
\qquad trans mallon of rectangular coordinates to polar coordinates anslomation of polar coordinates to rectangular coordinates

- To use the Engineering Symbol Menu

Press the function key below the numeric function you want to input.

Press the function key below the engineering symbol you want to input:

F1(m)e...... milli (10 0^{-3})	
F2(μ) micro (10^{-6})	
[73 (n)	
(F4) (p)	
[5](f)	
F6)(V)	menu

To assign a value to a value memory

- Engineering symbols cannot beiused inside of multistatements or programs.
- Press Exill to back step to the previous menu.

[F1] F2] F3 F4 F5 [F6

Example
To add 456 to value memory A and store the result in value memory B

- To use engineering symbols in calculations

Example $1000 \mathrm{~m} \times 5 \mathrm{k}$

	$1000 \mathrm{~m} \times 5 \mathrm{k}$	5000.

Value Memories

This calculator comes with 28 value memories as standard (which can be expanded to 528). You can use value memories to store values to be used inside of calculation Value memories are identified by single-letter names, which are made up of the 26 lette of the alphabet, plus r and θ. The maximum size of values that you can assign to val memories is 13 digits for the mantissa and 2 digits for the exponent. Value memory co tents are retained even when you switch power off.

Important

- Some value memories are used by the unit for certain types of calculations. Note th following

\cdots-Type of Calculation	Value Memories Used
Single-Variable Statistics (non-storage)	U, V, W
Paired-Variable Statistics (non-storage) $\quad \therefore \quad \therefore$ sin	$P, Q_{i} \cdot \mathbf{R} ; \mathrm{U}, \mathrm{V} ; \mathrm{W}$
Differentiation	F, G, H
Integration	K, L, M, N
Coordinate Conversion	I, J
Matrix Row Operations (swap, scalar products, addition)	K

- To display the contents of a value memory

Example To display the contents of value memory A

123.

To clear a value memory

Example To clear value memory A

[^1]
EAbout Memory Names

You may not be able to increase the number or value memories to the level you war the original 28 ．The names of the additional memories are $Z[1]$ ，$Z[2]$ ，$Z[3]$ ，ete．If you increase emory already contains programs，matrices iunction memory contents，or statis the number of value memories by 5 ，you can access the original 28 memories，plus calidata．If there is not enough unused memory available to increase to the number ye memories $Z[1]$ through $Z[5]$ ． specity，an error message will appear on the display．
－The ghtif［ralo specification can also be included within a program．

－To increase the number of value memories

Example To increase the number of value memories by 30 （for a total of 28 $30=58$ ）
（EyHIT）［atin 3 아

（1）Number of bytes used for programs
（2）Number of bytes used for function memory
（3）Number of bytes used for graphic function memory
（4）Number of available value memories
（5）Number of memories used for matrix calculations＇
（6）Number of memories used for statistical calculations
（7）Number of memories used for equation calculations
（8）Number of unused bytes remaining
－For（4），（5），（6），and（7），one memory uses eight bytes
s．

－To check the current memory status

－To initialize the number of value memories

SHif］Dimin ExE	Pre： 0 Mem：2B
－	F－M，D Mat 0
J＝\％ヶッ＂a	Grip\％\quad 日SD
	Sim： 0
1－	\therefore Pol： 0
	．4000 Bytes Free

आи：．．．；

1－5 Using the Function Memory

You can store up to six functions in memory for instant recall when you need them．Function memory can be used in any mode except the BASE Mode．
！

－To display the Function Memory Menu

－The following are the operations that are available from the function display at the bot－ tom of the screen．Press the function key below the operation you want to perform．

F1（STO） \qquad Stores functions
F2（RCL Recalls functions
F3（fn） Specifies input as a function．See page 197 for an example of（ 53 （fn）operation．
F4（LIST）：．．．．．．．．．．．．．．．Displays a list of stored functions
－Press trir to back step to the previous menu．
－To store a function＇
Example To store the function $(A+B)(A-B)$ as function memory number 3.

ETD RCD In 1 LIST

F1

F1（STO）

$$
\mathbf{3}
$$

STo RCl fin list

FUNCTION MEMORY
f1：
f 2 ：
$f 3:(A+B)(A-B)$
f 4 ：
f5：
$f \mathrm{f}$ ：
ETD RCL fn LIST

If the function memory number you assign a function to already contains a function, the previous function is replaced with the new one:

Executing the store operation while the display is blank deletes the function for the Function Memory you specify.

- To recall a function

Example To recall function memory number 3

	SHIf] [ixMEM
F2	

ETO RCL f fl LIST : F2]

VAR (Variable) Menu

The VAR Menu makes it easy for you to quickly recall graphic functions, equations, coefficients, solutions and other data from memory.

- To display the VAR Meni
\square

GRP SIM PLY

(F1) F2] F 3

The following are the data types that can be selected from the function menu at the bol-

of the display. Press the function key below the data type you want to specify. (F1)(GRP) \qquad Graphic functions that can be used to draw graphs in the Grap Mode
[2)(SiM) \qquad Coefficients and solutions for simultaneous linear equations (\qquad Coefficients and solutions for quadratic equations

- To display a list of available functions

-In the case of coefficients and solutions for simultaneous linear equations, you can only specify the newest memory data, either for linear equations with two unknowns or linear equations with three unknowns. Also note that changing the number of unknowns for simultaneous linear equations causes coefficients and solūtions for the previous number of unknowns to be deleted
Press to to back step to the previous display.

- To delete a function

To delete function memory number 3
SHFTHMEMACE1(STO)

Example To recall the rectangular function $y=2 x^{2}-3$ ，${ }^{\text {Th }}$ which is stored in Example 2 memory location Y 2 using the following range parameters：

Pange	
Xmin：－5．	
$\because \max :$ ¢．：	
scl： 1.	
Ymi п：－5．	
$\max : 5$.	
Scl： 1 ，	
INTT TRG	

To recall the coefficients for simultaneous linear equations： $3 x+2$ $=3$ ，and $2 x+3 y=3$ ．


```
F4）\((\mathrm{Coe})\) 欧
```


3.
－To recall coefficients and solutions for quadratic equations

［SHIT］WRAR（PLY）

$x_{1} X_{2}$ Coe

［F1］F2］F3］
The following are the data types that can be selected from the function menu at the bot－ tom of the display Press the function key below the data type you want to recall

F1（X1）
Recalls solution for X_{1} for a quadratic equation
［国（ X_{2} ）
Recalls solution for X_{2} for a quadratic equation
풍）（Coe）… Recalls coefficients for a quadratic equation in matrix form（and
Draw the graph using the procedures described on page 167_{s} also enters the recalled data into the Ans matrix）
－F3（Coe）only appears when this menu is displayed in the MAT Mode
－To recall coefficients and solutions tor simultaneous linear equations aress［mint to back step to the：previous display．

X X Y Z Cas
F1 F2 F3 ［F4

The following are the data types that can be selected from the function menu at the bo tom of the display．Press the function key below the data type you want to recall． $\therefore \quad \mathrm{Fi}(\mathrm{X})$ \qquad Recalls solution for X for a simultaneous linear equation F2（Y） －3（Z） FA）（Coe）
\qquad Recalls solution for Y for a simultaneous linear equation Recalls solution for \mathcal{Z} for a simultaneous linear equation
\qquad all coeficients for a simultaneous linear equation in ma form（and also enters the recalled data into the Ans matri
－F4（Coe）only appears when this menu is displayed in the MAT Mode． －Press Eilim to back step to the previous display．s．
：
To add 3 as a solution for X for arsimultaneous linear equation（Sim ＝8）．

F1 $(X)+3]$ 雨
Sim $x+3$
Example 1 To apply 3 as a solūtion for \mathbf{X}_{1} for a quadratic equation（ $\mathrm{Ply} \mathbf{X}_{1}=3$ ）
（ 3 （ $\mathbf{T 1}\left(X_{1}\right)$ 白

Example 2
To recall the coefficients for quadratic equation：$x^{2}+8+2=0$ ．

9.

［F3）（Coe）（19x

1-6 Using the BASE Mode

You can use the BASE Mode to perform calculations with binary, octal, decimal an hexadecimal values. You should also use this mode to convert between number system and for logical operations.

- You cannot use scientific functions in the BASE Mode.

You can use only integers in the BASE Mode, so fractional values are not allowed. 1 you input a value that includes a decimal part, the unit automatically cuts off the decima - If you attempt to enter a value that is invalid in the number system (binary, octal, decima hexadecimal) you are using, the calculator displays an error message. The following shof the numerals that can be used in each number system.

Binary: 0, 1
Octal: $0,1,2,3,4,5,6,7$
Decimal: $0,1,2,3,4,5,6,7,8,9$
Hexadecimal: $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$

- To enter the BASE Mode

Highlight the BASE icon on the Main Menu.

Press [ex or 2 to display the BASE Mode.
Main BASE Mode screen

RUN $/$ BASE-N $M-D / C D y: ~ M-D E C$
Deg Hex Ein [act diva LOE

The alphabetic characters used in the hexadecimal number appear differently on th display to distinguish them from text characters.

Normal Text: A, B, C, D, E, F

- Negative binary, octal, and hexadecimal values are produged using the two's comple ment of the original value.
- The following are the display capacities for each of the riumber systems:

Number System	Display Capacity
Binary	16 digits
Octal	11 digits
Decimal	10 digits
Hexadecimal	8 digits

-The following are the calculation capacities for each of the number systems.
Calculation Ranges in BASE Mode
Binary Values
Negative : $1000000000000000 \leqq x \leqq 1111111111111111$
Positive : $0 \leq x \leq 1111.11111111111$
Octal Values
Negative: $20000000000 \leqq x \leqq 37777777777$
Positive : $0 \leqq x \leqq 17777777777$
Decimal Values
Negative : $-2147483648 \leqq x \leqq-1$
Positive : $0 \leqq x \leqq 2147483647$
Hexadecimal Values
Negative : $80000000 \leqq x \leqq$ FFFFFFFF
Positive : $0 \leqq x \leqq 7 F F F F F F F$
he following are the number.systems that are available.

- To set the default BAŞE Mode number system

Example to set the default BASE Mode number system to decimal[F1(Dec) (10) \square
Dec
\varnothing

- To convert a displayed value from one number system to another Example To convert $1 ; 038_{0}$ (default number system) to its hexadecimal value

AC[1] [0] 3 [送

1038	\cdots	\ddots
\cdots,	\cdots	\ddots

Hex

0000040 E

－To input values of mixed number systems

Example To input $1,038_{0}+25 C_{H}+11011_{\mathrm{B}}+23_{0}$ ，when the default number syste is decimal

4 F4（0） 2 画
$1038+h 25 \mathbb{6}+11011$
$+023$
168：

1－7 Graphic and Text Displays

The unit uses both a graphic display and a text display．The graphic display is used for
Dec graphics，while the text display is used for calculations and instructions The contents of each type of display are stored in independent memory areas：${ }^{1}$
－To switch between the graphic display and text display． of display are different．

The following are the types of values that can be specified in the above menu．
\because Fin（d） \qquad decimal value
\therefore 雨（h） \qquad hexadecimal value
Fal（b） \qquad binary value
－Press tail to back step to the main BASE Mode＇screen
\qquad octal value
－To input logical operations
Example
Example To input and execute＂ 120_{15} and $A D_{16}$＂

－To clear the text display

Press ac．

If you press AC while in the graphic display，the calculator clears the display and automat－ ically switches to the text display．Though the graphic display is eleared，it remains in memory，so you can return the graph to the display by pressing 國

Press the（ri－f key．You should also note that the key operations used to clear each type
\therefore ே

1－8 Technical Information

Calculation Priority Sequence
This calculator employs true algebraic logic to calculate the parts of a formula in the following order：
（1）Coordinate transformation
$\operatorname{Pol}(x, y), \operatorname{Rec}(r, \theta)$
DifferentiationtIntegration
$d / d x_{1} \int d x$
（2）Type A functions $\quad \therefore \quad \therefore \quad$ an
With these functions，the value is entered and then the function key is pressed．
$x^{2}, x^{-1}, x!, 8^{\prime}:$ ，ENG symbols
（3）Power／root
$\wedge\left(x^{\prime \prime}\right) \sqrt[1]{2}$
（4）Fractions
（4）Fraction
$a^{b / c}$
（5）Abbreviated multiplication format in front of π ，memory or parenthesis $2 \pi, 5 A, 3 \sin x_{1}$ etc．
(6) Type B functions

With these functions, the fünction key is pressed and then the value is entered. $\sqrt{\square}, \sqrt[3]{1}, \log , \operatorname{In}, \mathrm{e}^{x}, 10^{x}, \sin , \cos , \tan , \sin ^{-1}, \cos ^{-1}, \tan ^{-1}, \sinh$, cosh, tanh, sinh cosh $^{-1}$, tanh ${ }^{-1}$; (-), parenthesis, (following in BASE Mode only) d, h, $\mathrm{b}, \mathrm{o}, \mathrm{Neg}, \mathrm{N}$ (also Mat, Det, Trn in the MAT Mode only) \qquad
(7) Abbreviated multiplication format in front of Type B functions
$2 \sqrt{3}, A \log 2$, etc.
(8) Permutation, combination
$n \mathrm{Pr}, n \mathrm{Cr}$
(9) \times, \div
(10),+-
(11) and
(12) $o r$, xor, xnor]

BASE Mode only
-When functions with the same priority are used in series, execution is performed fro right to left.
$\mathrm{e}^{x} \ln \sqrt{120} \rightarrow \mathrm{e}^{x}(\ln (\sqrt{120}))$
Otherwise, execution is from left to right.
-Anything contained within parentheses receives highest priority

Example $2+3 \times\left(\log \sin 2 \pi^{2}+6.8\right)=22.07101691$ (in the "Rad" mode)

EStacks

The unit employs memory blocks, called stacks, for storage of low priority values ali commands. There is a 10 -level numeric value stack, a 26 -level command stack, and 10 -level program subroutine stack. If you execute a formula so complex-it exceeds ticalculation results that are greater than 100 (10 billion) or less than 10-2 (0.01) are amount of stack space available, an error message appears on the display (Stk ERRoutomatically displayed in exponential, form. during calculations or Ne ERROR during execution of a program subroutine).

6a,
Stk ERROR
Bytes

Numeric Value Stack

(1)	2
(2)	3
(3)	4
(4)	5
(5)	4
\vdots	

\% :
*Calculations are performed according to the priority sequence described on page 47.

	Зе5 -7
	42857.1428
3 Exp 5] 7×4 [8 [5] 7 .	$3 \mathrm{E} 5 \div 7-42857$
Exe ${ }^{\prime \prime}$	0: 14285

Command Stack

[1]	x	\therefore - 6 ¢
2	(
[3]	(\%
4)	+	
[5]	x	i
6	$($	
7	+	
\%:	\%	

Once a calculation is executed, it is cleared from the stack.

Value Input and Output Limitations

The allowable range for both input and output values is 10 digits for the mantissa and 2 digits for the exponent. Internally, however; the ünit performs calculations using 13 digits or the mantissa and 2 digits for the exponent.

Example $3 \times 10^{5} \div 7-42857=$

\square

MInput Capacity

This unit has a 127-byte area for execution of calculations. Each time you press a numelpuring normal calculation, the unit is capable of displaying up to 10 digits: Values that key or arithmetic operation key, one byte of memory is used. In addition, the followioxceed this limit, however, are automatically displayed in exponential format. You can
functions take up two bytes each:
$\cdot d / d x$ (

- Mat, Det, Trn (MAT Mode)
**ROW, *ROW + , ROW + ,Swap (using Matrices in Program)

A calculation can consist of up to 127 bytes. Whenever you input the 121 st byte of at calculation, the cursor changes from "-" to " ${ }^{\text {" }}$ " on the display to let you know the you are running out of memory. If you still need to input more, you should divide yo. calculation into two or more parts.

Note

- As you input numeric values or commands, they appear flush left on the displaj Calculation results, on the other hand, are displayed flush right.
choose between 2 different types of exponential display formats. \cdot :
Norm 1: $10^{-2}(0.01)>|x|,|x| \geqq 10^{10}$
Norm 2: $10^{-9}(0.000000001)>|x|,|x| \geqq 10^{10}$
tilisi displays the current mode settings.

Overflow and Errors

(All of the examples in this manual show calculation results using Norm 1.)
Exceeding a specified input or calculation range, or attempting an illegal input causeHow to interpret exponential format an error message to appear on the display. Further operation of the calculator is imposs ble while an error message is displayed. The following events cause an error messag to appear on the display.
-When any result, whether intermediate or final, or any value in memory exceed $\pm 9.999999999 \times 10^{99}$ (Ma ERROR)
-When an attempt is made to perform a function calculation that exceeds the input rang (Ma ERAOR) (see page 271)
-When an illegal operation is attempted during statistical calculations (Ma ERROR)

$1.2 \times 10^{71} \rightarrow 120,000,000,000$
For example, attempting to obtain \bar{x} or $x \sigma n$ without data input \therefore -
When the capacity of the numeric value stack or command stack is exceeded (Sik ERR $1.2 \mathrm{E}+11$ indicates that the result is equivalent to 1.2×10^{11}. This means that you should

-When an attempt is made to perform a calculation using an illegal formula (Syn ERROR This results in the value 120,000,000,000.

For example, $5 \times \mathbf{X} 3$ 国

-Wher an illegal memory specification is made (Mem ERROR)

- When an illegal command or function argument is used (Arg ERROR)
-When an attempt is made to use an illegal dimension duiring matrix calculations (Din ERROR)

Notes

- Other errors can occur during program execution. See page 269 for details.

Most of the calculator's keys are inoperative while an error message is displayed. V_{0} can resume operation using one of the two following procedures.

- Press the AC key to clear the error and return to normal operation.

$1.2 \times 10^{-3} \Rightarrow 0.0012$
$1.2 \mathrm{e}-03$ indicates that the result is equivalent to 1.2×10^{-3}. This means that you should move the decimal point in 1.2 three places to the left, since the exponent is negative. This results in the value 0.0012 .
- Press. (9) or 0 to display the error (see page 29).

■Calculation Execution Display

When the calculator is busy drawing a graph or executing a tong, complex calcula or program, a black box (回) flashes in the upper right corner of the display. This bla box indicates that the calculator is performing an internal operation.

Chapter

Manual Calculations

-When Errors Keep Occurring...

If you find that errors keep occurring when you try to periorm an operation, use the 2-1. Arithmetic Calculations lowing procedure to bring the calculator back to its initial settings and try again
(1) Press to display the Main Menu
(2) Use the cursor keys to highlight the COMP icon and then press 国.
(3) Press 5 smer
(4) Press [min

2-2 Units of Angular Measurement
2-3. Trigonometric and Inverse Trigonometric Functions
2-4 Logarithmic and Exponential Functions
2-5 Hyperbolic and Inverse Hyperbolic Functions
2-6 Other Functions
2-7 Coordinate Conversion
2-8 Permutation and Combination
2-9 Fractions
2-10 Engineering Symbol Calculations
2-11 Number of Decimal Places, Number of Significant Digits, Display Format

2-12 Calculations Using Memory
2-13 BASE Mode Calculations

Manual calculations are those that you input manually，as on the simplest of calculato They are to be distinguished from programmed calculations．This chapter provides ious examples to help you become familiar with the manual calculation capabilities of th unit．

Example ．．	Operation．．．	Display	
$13+5 \times 6=33 \quad 10 y$	$3+5 \times 6 \text { 国 }$	，	33.
）			
$7 \times 8-4 \times 5=36$	¢－9\％ 7×8－4X5国	Sirat：	36.
，			
$1+2-3 \times 4 \div 5+6=6.6$	1＋2－3×4	－	6.6

2－1 Arithmetic Calculations

－Enter arithmetic calculations as they are written，from left to right．
$\therefore \quad \therefore \quad$－
－Use the 团 key to input：the minus sign before a negative value．
－Calculations are performed internally with a 13 －digit mantissa．The display is rounde
to a 10 －digit mantissa before it is displayed．

Calculations Using Parentheses

2-2 Units of Angular Measurement

- See page 23 for full details on specifying the unit of angular measurement:
- Once you specify a unit of angular measurement, it remains in effect until you specit
a different one. The specification is retained even if you switch power off.
-The following calculations cannot be performed in the BASE Mode.

Example	Operation	Display
Result displayed in degrees.		
To convert 4.25 rad to		243.507062
degrees.		
$47.3^{\circ}+82.5 \mathrm{rad}=4774.20181^{\circ}$		4774.

2-3 Trigonometric and Inverse Trigonometric Functions

- Be sure to set the unit of angular measurement before performing trigonometric funo tion and inverse trigonometric function calculations:
- The following calculations cannot be performed in the BASE Mode.

$\sin 63^{\circ} 52^{\prime} 41^{\prime \prime}=0$
\therefore
$\cos \left(\frac{\pi}{3} \mathrm{rad}\right)=0.5$

$\tan (-35 g r a)=-0.6128007881$ \therefore.
$2 \cdot \sin 45^{\circ} \times \cos 65^{\circ}$ $=0.5976724775$
$\cot 30^{\circ}=\frac{1}{\tan 30^{\circ}}$
$=1.732050808$

2-4 Logarithmic and Exponential Functions

-The following calculation's cannot be performed in the. BASE Mode:

422.5878667

2-5 Hyperbolic and Inverse Hyperbolic Functions

-The following calculations cannot be performed in the BASE.Mode:

2－7 Coordinate Conversion

－Rectangular Coordinates

－Calculation results are stored in value memories I and J ．

	1	J
Pol	r	θ
Rec	x	y

With polar coardinates
，θ can be calculated within a range of $-180^{\circ}<\theta \leqq 180^{\circ}$（radiankems and grads have same range）．
－The following calculations cannot be performed in the BASE Mode．

Example	O Operation	Display
To calculate r and θ° when $x=14$ and $y=20.7$ ．	［5HIT］［国（Deg）國 5Nll 14 패표 920.7 （ 	$\begin{array}{r} 24.98979792(\theta) \\ 55.9283901 \\ 55^{\circ} 55^{\prime} 42.2^{\prime \prime} \end{array}$
To calculate x and y when $r=4.5$ and $\theta=\frac{2}{3} \pi \mathrm{rad}$ ．		
4		2．-2.25 （x）
	\therefore（Continuing）	3.897114317 （v）

2－8 Permutation and Combination
Permutation
－Combination
$n \operatorname{Pr}=\frac{n!}{(n-r)!}$
$n \mathrm{Cr}=\frac{n!}{r!-(n-r)!}$
The following calculations cannot be performed in the BASE Mode．

Example	Operation	Display
To calculate the possible number of different arrange－ ments using 4 items selected from among of 10 items． $10 \mathrm{P}_{4}=5040$ To calculate the possible number of different combina－ tions of 4 items that can be	 ［ F 2 （ $n \mathrm{Pr})$ 4訤 F3（ $n \mathrm{Cr}) 4 \mathrm{EE}$	

（ $\mathrm{FB}(n \mathrm{Cr}) 4 \mathrm{EE}$
210

To calculate x and y when $r=4.5$ and $\theta=\frac{2}{3} \pi$ rad．
ms．

$$
\begin{aligned}
& \text { of } 4 \text { tems that can by } \\
& \text { ted from among } 10
\end{aligned}
$$

$10 \mathrm{C}_{4}=210$

2-9 Fractions

2-10 Engineering Symbol Calculations

- Fractional values are displayed with the integer first, followed by the numerator and thef Input engineering symbols üsing the Enginieening Symbol Menu from the MATH Menu, the denominator.
-The following calculations cannot be performed in the BASE Mode.

2-11
 Number of Decimal Places, Number of Significant Digits, Display Format

- See page 23 for details on specifying the number of decimal places. - See page 24 for details on specifying the number of significant digits.
-See page 25 for details on specifying the display format.

Example : Operation

2-12 Calculations Using Memory

-See page 36 for details on value memories.

2－13 BASE Mode Calculations

－Negative Values

Example	Operation	Display
Negative of $110010_{2} \ldots$		0000000000000000 1111111111001110

－Arithmetic Operations

Logical Operations

－See page 46 for details on the logical operations menu．

$5_{16} \times$ OR $3_{16}=6_{16}$
$2 A_{16} \times N O R D_{16}=$ FFFFFF88 ${ }_{16}$

Negation of 1234_{8}

Negation of 2FFFED ${ }_{16}$

LOG）

$\triangle C$ Exit $\mathrm{FA}(\mathrm{Oct})$ 国

 120国（LOG）（F4）（or）（Eill

1010匡（LOG）F3（and）
（0）

医（h） 7 （區

AC EATIT）（Hex）

00000006

00000000
2AFE（LOG）${ }^{[6]}$（xnor）5D
FFFFIFFF88

00000000000 37777776543

00000000

FFFD00012

Differential and Integration Calculations

3-1 How the Unit Calculates Differentials
3-2 How the Unit Calculates Integrations

Chapter

Differential and Integration Calculations
This chapter provides procedures for performing differential and integration calculations．

3－1 How the Unit Calculates Differentials

The following is the input format for differentials：


```
                        Increase/decrease of \(x\)
aint tor which you want to determine the derivative
\[
d / d x(f(x), a, \Delta x) \rightarrow \frac{d}{d x} f(a)
\]
```

The differentiation for this type of calculation is defined as：

$$
f^{\prime}(a)=\lim _{\Delta x \rightarrow 0} \frac{f(a+\Delta x)-f(a)}{\Delta x}
$$

In this definition，infinitesimal is replaced by a sufficiently small Δx ，with the value in the neighborhood of $f^{\prime}(a)$ calculated as：

$$
f^{\prime}(a) \fallingdotseq \frac{f(a+\Delta x)-f(a)}{\Delta x}
$$

In order to provide the best precision possible，this unit employs central difference to per－ form differential caliculations．The following illustrates central difference．

The slopes of point a and point $a+\Delta x$ ，and of point a and point $a-\Delta x$ in function $y=f(x)$ are as follows：

$$
\frac{f(a+\Delta x)-f(a)}{\Delta x}=\frac{\Delta y}{\Delta x}, \frac{f(a)-f(a-\Delta x)}{\Delta x}=\frac{\nabla y}{\nabla x}
$$

In the above，$\Delta y / \Delta x$ is called the forward difference，while $\nabla y / \nabla x$ is the backward difference To calculate derivatives，the unit takes the average between the value of $\Delta y / \Delta x$ and $\nabla y / \nabla x$ thereby providing higher precision for derivatives．
This average，which is called the central difference，is expressed as：

$$
\begin{align*}
f^{\prime}(a) & =\frac{1}{2}\left(\frac{f(a+\Delta x)-f(a)}{\Delta x}+\frac{f(a)-f(a-\Delta x)}{\Delta x}\right) \\
& =\frac{f(a+\Delta x)-f(a-\Delta x)}{2 \Delta x}
\end{align*}
$$

－To Perform a Differential Calculation

Example To determine the derivative at point $x=3$ for the function $y=x^{3}+4 x^{2}+$ $x-6$ ，when the increase／decrease of x is defined as $\Delta x=1 \mathrm{E}-5$ ．

```
Input the function f(x).
```



```
[x]+[.0.] - [6] [HFT]
```


Input point $x=a$ for which you to determine the derivative：

（3）SIIIFIT

d/dx(X^3+4X2+X-6
res input Δx ，which is the tincreasel decrease of x ．
（1）（6） 50

$$
\left\lvert\, \begin{aligned}
& d / d x(\times \wedge 3+4 \times 2+X-6 \\
& 3,7 \varepsilon-5)-
\end{aligned}\right.
$$

$$
d / d x\left(X^{\wedge} 3+4 x^{2}+X-6\right.
$$

$$
, 3,1-E-5)
$$

－Note that only x can be used an expression in the function $f(x)$ ．All other variables（alpha characters，r, θ ）are regarded as constants，and the values stored for them in value memory are applied for the calculation．
－Input of Δx for the increase／decrease of x can be skipped．When you do，the unit auto－ matically uses a value for Δx that is appropriate for the value of $x=a$ ，which you speci－ fied as the point for which you wanted to determine the derivative． －The precision of the above operation is generally ± 1 at the least significant digit．

-Applications of Differential Calculations

-Differentials can be added, subtracted, multiplied and divided with each other.
$\frac{d}{d x} f(a)=f^{\prime}(a), \frac{d}{d x} g(a)=g^{\prime}(a)$
Therefore:

$$
f^{\prime}(a)+g^{\prime}(a), f^{\prime}(a) \times g^{\prime}(a)
$$

-Differential results can be used in addition, subtraction, multiplication, and division, and in functions.

Example $2 \times f^{\prime}(a), \log \left(f^{\prime}(a)\right)$

- Functions can be used in any of the term $(f(x), a, \Delta x)$ of a differential.

Example $\frac{d}{d x}(\sin x+\cos x, \sin 0.5)$

- You cannot use a differential as the term of an integral or another differential.

Important

- Pressing EC during calculation of a differential (while the cursor is not shown on the display) interrupts the calculation. After interrupting a calculation, you can use (6) and (5) to recall the differential formula. Pressing 国executes the displayed formula again. - Always perform trigonometric integrations using radians (Rad Miode) as the unit of angular measurement (page 23).
- Differential calculations use value memories F through H for storage, deleting any contents that were-previously stored. This also means that you cannot use these value memories during differential calculations.

Value Memory	F	G	H
Data Stored	a	Δx	$d f(a) / d x$

In addition to the above, the value for derivative a is stored in value memory X .

3-2 How the Unit Calculates Integrations

The following is the input formal for integrations:

Integration calculations are performed by applying simpson's Rule for the $f(x)$ function you input. This method requires that the number divisions be defined as $N=2^{n}$, where the value of n is an integer in the range of 1 through 9 . If you do not specify a value for n, the calculator automatically assigns a value in accordance with the integration being performed.
As shown in the illustration above, integration calculations are performied by calculating integral values from a through b for the function $y=f(x)$ where $a \leqq x \leqq b$, and $f(x) \geqq 0^{*}$. This in effect calculates the surface area of the shaded area in the illustration. If $f(x)<0$ where $a \leqq x \leqq b$, the surface area calculation produces negative values (surface area $x-1$)

Also note that the calculator uses the following value memories to store data during inegration calculations.

Value Memory	K	L	M	N
Data Stored	a	b	$N=2^{\prime \prime}$	$\int_{a}^{b^{\prime}} f(x) d x$

To Perform an Integration Calculation

Example To perform the integration calculation for the function $\int_{1}^{5}\left(2 x^{2}+3 x+4\right) d x$

Input the function $f(x)$.

 (x.8) +4 , 5ill

mput the start point and end $\sqrt{5\left(2 x^{2}+3 x+4,1,5,-\right.}$ point.
input the number of divisions. 60㫛

$$
\int\left(2 x^{2}+3 x+4\right)-
$$

1) 5 HH , 5 , (5HIT)

Application of Integration Calculation

- Integrals can be used in addition, subtraction, multiplication and division? ne,

$$
\text { Example } \int_{a}^{b} f(x) d x+\int_{c}^{d} g(x) d x \text {. }
$$

- Integration results can be used in addition, subtraction, multiplication and division, in functions.

$$
\begin{array}{ll}
\text { Example } & 2 \times \int_{a}^{b} f(x) d x, \\
& \log \left(\int_{a}^{b} f(x) d x\right)
\end{array}
$$

- Functions can be used in any of the terms $(f(x), a, b, n)$ of an integral

Example, $\int_{\sin 0.5}^{\cos 0.5}(\sin x+\cos x) d x$

$$
=\int(\sin x+\cos x, \sin 0.5, \cos 0.5,5)
$$

- You caninot use an integral as the term of a differential or another integral.

Important

Pressing AC during calculation of an integral (while the cursor is not shown on the display) interrupts the calculation.-After interrupting a calculation, you can use (9) and $(\boldsymbol{\theta}$ to recall the integral formula. Pressing 国executes the displayed formula again
Always perform trigonometric integrations using radians (Rad Mode) as the unit of angular measurement (see page 23)
Integration calculations use value memories K through N for ${ }^{2}$
that may be already stored. This also means that you cannot uge, deleting any contents during integration calculations.
In addition to the above, the value that represents division beginning point a is stored in value memory X following completion of the integration calculation.
This unit utilizes Simpson's rule for integration calculation. As the number of significant digits is increased, extended calculation time is required. In some cases, calculation results may be erroneous even after considerable time expires in calculation. In particular, when significant digits are less than 1 , an ERROR (Ma ERROR) sometimes occurs. Integration involving certain types of functions or ranges can result in relatively large errors being generated in the values produced.

- $f(x)$ can use the X value memory name only. If you use any other value memory name, it is regarded as a constant and the corresponding memory contents are applied.
- Note the following points to ensure correct integration values:
(1) When cyclical functions for integration values become positive or negative for differ ent divisions, perform the calculation for single cycles, or divide between negative and positive, and then add the results together.

$$
\begin{aligned}
& \xrightarrow[0]{f(x)} \\
& \begin{array}{r}
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\left(-\int_{c}^{b} f(x) d x\right) \\
\text { Positive part (S) . Negative part }
\end{array}
\end{aligned}
$$

(2) When minute fluctuations in integration divisions produce large fluctuations in integration values; calculate the integration divisions separately (divide the large fluctuation areas into smaller divisions), and then add the results together.

$\int_{a}^{b} f(x) d x=\int_{a}^{x 1} f(x) d x+\int_{x 1}^{x 2} f(x) d x+\cdots+\int_{x 4}^{b} f(x) d x$

Statistical Calculations

4-1 Single-Variable Statistical Calculations
4-2 Paired-Variable Statistical Calculations
4-3 Things to Remember during Statistical Calculations
4-4 Examples of Statistical Calculations

Chapter

There are two types of statistical calculations：single－variable statistical calculations per－ formed using standard deviation，and paired－variable statistical calculations performed using regression．
Regression calculations can be performed using linear regression，logarithmic regres－ sion，exponential regression and power regression．
No matter what type of statistical calculations you decide to perform，you can tell the unit to either store the statistical data or not to store the data．Choosing storage of data causes the data you input to be stored in special statistical data memory．Choosing non－storage of data causes the data you input to be processed and discarded as soon as you input it．If you choose to store the data，be sure to use the following operation to clear memory contents before beginaing calculations．

4－1 Single－Variable Statistical Calculations

You should use the Standard Deviation Mode to perform single－variable statistical calcu－ lations．In this mode，you cani calculate the population standard deviation，the sample standard deviation，the mean，the sum of squares of the data，the sum of the data，and the number of data items．

To Enter the Standard Deviation Mode without Data Storage

 Highlight the SD icon on the Main Menu．
KEEN
 （C）（ $)$（ $)$

Press［⿴囗玉国 or to display the Standard Deviation（SD）Mode．

$$
\text { ExE (or } 3 \text {) }
$$

The first line of the SD Mode Set Up Display should show＂S－data ：NON－＂．If it shows＂S－data ：STO＂you have to change the set up using the procedure described on page 20.

$\begin{array}{r} \text { RUN } \\ \text { S-data }: \end{array}$	SD NON－
S－graph：	NON－
G－type	REC／CON
angle	Deg
display	Nrml
M - ／Cpy	$\mathrm{M}-\mathrm{Di}$
DT／LL	DEV צ PGF
［F1］［F2］	F4 FF5 F6］

The following are the operations that are available from the function display at the bottom of the screen．Press the function key below the operation you want to perform．
（F1（DT）
\qquad Inputs data
F2（CL） \qquad Clears data
［国（；） \qquad Used to input the number of data items （FA）（DEV） \qquad Statistica／representative menu
（F5）（D） \qquad Sum data menu
EG（PQR） \qquad Probability distribution menu

The unit uses the following value memories to store values．Do not use these memories for storage if you plan to perform statistical operations．

Value Memory	U	V	W
Statistical Data	Σx^{2}	Σx	n

－When drawing a graph for single－variable statistical data，STAT GRAPH must be set to the DRAW Mode（page 20）
－To input data

$$
\begin{aligned}
& \text { Example } 1 \text { To input the data 10, 20, } 30
\end{aligned}
$$

10国（DT）20 Fib（DT） 30 （F1）（DT）

Example 2 To input the data $10,20,20,30$

Note that simply pressing（E1）（DT）inputs the previously entered data．

Example 3	tat 10，20，20，20，20，20，20， 30

Note that you can input multiple data items by entering the data，pressing（F3（；），and then entering the number of data items

－To delete data

Example 1 Data input sequence：40［Fi（DT）20 Fi］（DT）30［F1（DT）50 Fil（DT） To delete the 50 ［Fin（DT）（last data item entered），press ［2（CL）．
Example 2 Data input sequence：40（F1）（DT）20 F1（DT）30（F1）（DT）50 Fi（DT） To delete the 20国（DT），enter 20国（CL）．

mple 4	

To delete the 120可（；）31，press AC．

To delete the 120国（；）31F1（DT），enter 120国（；）31F2（CL）．

■To Enter the Standard Deviation Mode with Data Storage:

The first line of the SD Mode Set Up Display should show "S-data : STO". If it shows "S-data: NON-" you have to change the set up using the procedure described on page 20.

The following are the operations that are available from the function display at the bottom of the screen. Press the function key below the operation you want to perform.

F1](DT)
(E2)
(EDIT) \qquad Inputs data

Fa(;) . \qquad Edit function menu
(FA)(DEV) \qquad Used to input the number of data items国(D) Statistical/representative menu
[$\operatorname{E6}$ (PQR) \qquad Sum data menu
$\Sigma x^{2}, \Sigma x$, and n data are stored in their own memory area, and so they do not use value memories.

- See pages 91 and 154 for the formulas used to calculate standard deviation, mean, and probability distribution
-The maximum value is the largest value input for X, while the minimum value is the smallest value input for X.
-The median is the middle value of the distribution. If any data item has a negative value, or if it is greater than 10^{19}, or if the data includes a data item of 0 , an Ma ERROR occurs.

- To input data

Example 1 To input the data $10,20,30$

Before actually beginning data input, use the following sequence to delete any data that may already be stored inside the special statistical data memory.

| (F2)(EDIT) | \|DEL |NS ERS ${ }^{\text {\|NS }}$ |
| :---: | :---: |
| | F1 F2 F3 |
| F3)(EPS) | /YES • EAASE ALL DATA $\sqrt{\mathrm{NO}}$ |
| . . . | [F1] $\because \ldots \ldots$ |
| F1 (YES) | $\text { (DT EDT) : DEV } 5 \text { PGB }$ |
| | (F1) |

10国(DT) 20 Fil(DT) 30 (DT)

Example 2 To input the data $10,20,20,30$

Note that-simply-pressing FI(DT) inputs the previously entered data

Example 3 To input the data 10, 20, 20, 20, 20, 20, 20, 30 10 Fil(DT) 20

Note that you can input multiple data items by entering the data, pressing ($\mathrm{ES}($; $;$, and then entering the number of data items.

- To edit data items stored in memory

Example To change 50 to 54

\because

From the function ment at the bottom of the SD Mode set up display, press [z2)(EDIT) to start the editing operation.

EXE

	\times	f
1	52	1
2	52	1
3	54	1
4	58	2
5	56	1
[DEL \|INS ERS		

After you finish editing the data, press 國) and then F6(CAL) (see page 91).

- To delete specific data items stored in memory

Example To delete 54

From the function menu at the bottom of the SD Mode set up display, press (E2)(EDIT) to start the editing operation.

F1(DEL)

[1]

58.
[DEL $\sqrt{1 N 5}$ ERS

After you finish deleting the data, press [inif and then (F6)(CAL) (see page 91).

- To insert data items into data stored in memory

Example To insert 0 between 52 and 58

From the function menu at the bottom of the SD Mode set up display, press [20 (EDIT) to start the editing operation.
[F 2 (EDIT)

F2(INS)

After you finish inserting the data, press Eiil and then F6(CAL) (see page 91).

- Performing Single-Variable Calculations

After inputting the data, select the type of operation you want from the function menu at the bottom of the SD Mode set up display. Press one of the following function keys to display a menu of available operations.
[44(DEV) \qquad Statistica//representative menu
[国(E) \qquad Sum data menu
$\mathrm{FE}(\mathrm{PQR})$ \qquad Probability distribution menu

Each of these menus is described in detail below.
Without data storage (S-data : NON-)

- Statistical/Representative Menu
(E4)(DEV)
$\overline{\mathrm{x}} \mathrm{xO} \mathrm{\pi} \mathrm{KOn=}$ Mod

F1 (\bar{x})	Mean of x－data
［F2）$\left(x O_{n}\right)$	Population standard deviation of x－data
［ra）$\left(x \sigma_{n-1}\right)$	Sample standard deviation of x－data
［F4（Mod）	Mode value for input data

With data storage（S－data ：STO）

－Statistical／Representative Menu
F4（DEV）
$\bar{x} \times 0 n \times 0 n-\square$
（F1 F2 F3］［F4
FI (\bar{x}) \qquad Mean of x－data
［ ${ }^{2}$ 2 $(x \sigma \pi)$ \qquad Population standard deviation of x－data
［国 $(x \sigma n-1)$ \qquad Sample standard deviation of x－data Fal \qquad Representative calculation menu
－Representative Menu

F4（D）－	Mod Med Mex Min
	［F1］［F2］［F］F4］
［F1］（Mod）．．．．．．．．．．．．．．	
［圂（Med）．．．．．．．．．．．．．．	
［ F3（Max）．．．．．．．．）	
E［4（Min）．．．．．．．．．．．．．．．	

－Sum Data Menu

FS (
$\Sigma x^{2} \Sigma x \mid n$
（F1）F2］FB］

－Probability Distribution Menu
［66（PQR）
F2

F1（P） \qquad Probability P（t）value
国（ Q （） \qquad Probability Q（t）value
F（R） Probability R（t）value
E4（t） Normalized variation $t(x)$

4－2 Paired－Variable Statistical Calculations

You should use the Regression Mode to perform paired－variable statistical calculations． In this mode，you can perform linear regression，logarithmic regression，exponential regres－ sion，and power regression．

To Enter the Regression Mode without Data Storage

Highlight the REG icon on the Main Menu．

（4EHib

（4）$(\mathbf{D}$

Press［⿴囗玉㐅木速 or 4 to display the Regression（REG）Mode：

EXE（or 4 ）

The first line of the REG Mode Set Up Display should show＂S－data：NON－＂．If it shows＂S－data ：STO＂you have to change the set up using the procedure described on page 20.

S-data	LIN－REG NON－
S－graph：	NON－
G－type	REC／CON
angle	Deg
display	Nrm1
M－D／Cpy	M－Disp
DT CL	DEV $\overline{5}$ REE
［F1［F2］F9	F4 F5 F6

The following are the operations that are available from the function display at the bottom of the screen．Press the function key below the operation you want to perform．

The unit uses the following value memories to store values．Do not use these memories for storage if you plan to perform statistical operations．

Value Memory	P	Q	R	U	V	W
Statistical Data	Σy^{2}	Σy	$\Sigma x y$	Σx^{2}	Σx	n

－When drawing a graph for paired－variable statistical data，STAT GRAPH must be set to the DRAW Mode（page 20）．

To Enter the Linear Regression Mode

（sill F1（LIN）EXIT

RUN／LIN－REG

The linear regression formula is $\boldsymbol{y}=\mathrm{A}+\mathrm{B} \boldsymbol{x}$ ．

$$
-85-
$$

－To input data for linear regression
Example 1
To input the data $10 / 20,20 / 30,20 / 30,40 / 50$

10 Fas（，）20（FI）（DT）

Fil）（DT）
40통（，）50（FI）（DT）
Example 2 To input the data 10／20，20／30，20／30，20／30，20／30，20／30，40／50 10国（，）20 F1（DT）

40 F3（，）50 Fin（DT）．
Note that you can input multiple data pairs by entering the data，pressing Imphan then entering the number of data pairs．

－To delete data

Example 1 Data input sequence： 10 圂（，）40（FT）
20 Fal（，20 Fi（DT）
30 F3（，）30 F1（DT）
40芭（，）50 Fin（DT）
To delete the 40 囷（，）50国（DT）（last data pair entered），press $\mathrm{F}(\mathrm{CL})$
\qquad Data input sequence： 10 Fa3（，） 40 F1（DT） 20目（，）20 F1（DT） 30 ${ }^{53}(\mathrm{G}$ ） 30 ［F］（DT） 40匿（，） 50
To delete the 40 匀（，$) 50$ ，press $A C$
Example 3 Data input sequence：10 3 （， 40 （国（DT）
20国（：）20표（DT）
30国（，）30（E1）（DT）

－To Enter the Logarithmic Regression Mode

The logarithmic regression formula is $y=\mathbf{A}+\mathbf{B} \cdot \ln x$
－To input data for logarithmic regression
Input data using the same procedures as described for linear regression on page 86.

－To delete data

Delete data using the same procedures as described for linear regression on page 86.
The following shows the equivalent values between linear regression and logarithmic regression．

Linear Regression	Logarithmic Regression
Σx	$\Sigma \ln x$
Σx^{2}	$\Sigma(\ln x)^{2}$
$\Sigma x y$	$\Sigma \ln x \cdot y$

■To Enter the Exponential Regression Mode

The exponential regression formula is $y=A \cdot e^{B \cdot x}(\ln y=\ln A+B x)$
－To input data for exponential regression
Input data using the same procedures as described for linear regression on page 86.
－To delete data
Delete data using the same procedures as described for linear regression on page 86.

The following shows the equivalent values between linear regression and exponential regression．

Linear Regression	Exponential Regression
$\Sigma y \quad \cdots$	$\Sigma \ln y$
Σy^{2}	$\Sigma(\ln y)^{2}$
$\Sigma x y$	$\Sigma x \cdot \ln y$

■To Enter the Power Regression Mode

The power regression formula is $y=\mathrm{A} \cdot x^{6}(\ln y=\ln \mathrm{A}+\mathrm{B} \ln x)$ ．

－To input data for power regression

Input data using the same procedures as described for linear regression on page 86.
－To delete data
Delete data using the same procedures as described for tinear regression on page 86 ．

The following shows the equivalent values between linear regression and power regression．

Linear Regression	Power Regression
Σx	$\Sigma \ln \dot{x}$
$\Sigma \Sigma x^{2}$	$\Sigma(\ln x)^{2}$
Σy	$\Sigma \ln y$
Σy^{2}	$\Sigma(\ln y)^{2}$
$\Sigma x y$	$\Sigma \Sigma \ln x \cdot \ln y$

To Enter the Regression Mode with Data Storage

The first line of the REG Mode Set Up Display should show＇S－data ：STO＇．If it shows＂S－data：NON＇＂yoú Have to change the set up using the procedure described on page 20.

The following are the operations that are available from the function display at the bottom of the screen．Press the function key below the operation you want to perform．

FFI（DT）．．．．．．．．．．．．．．．Inputs data	
［22）（EDIT）．．．．．．．．．．．．．Displays an edit function menu．	
［ 73 （，）	Inputs comma between x－and y－d
［F4）（DEV）	Statistical menu
［5］（E）	Sum data menu
囷（REG）	Regression／estimated value menu

－$\Sigma x^{2}, \Sigma x, n, \Sigma y^{2}, \Sigma y$ ，and $\Sigma x y$ data are stored in their own memory area，and so they do not use value memories．

－To inpüt data

The following input procedures can be used to input data for linear，logarithmic，exponential， and power regression．

To input the data $10 / 20 ; 20 / 30,20 / 30,40 / 50$
Before actually beginning data inpitt；use the following sequence to delete any statistical data stored in memory，
F2（ED｜T）（ET3（ERS）［FT（YES）

20 F3（，）30 F1（DT）
F1（DT）
40（F3）（；）50 Fi］（DT）

Example 2 To input the data 10／20，20／30，20／30，20／30，20／30，20／30， $40 / 50$

10（Es）（，20E1（DT）

40国（，）50円（DT）

```
as%%
```

Note that you can input multiple data pairs by entering the data，pressing（1）and then entering the number of data pairs．

－To edit data

To change，delete，insert，or clear data，press 国（EDIT）to display the edit function menu and then perform the same procedures as those described for single－variable data on pages 81 to 83 ．

－Performing Paired－Variable Calculations

After inputting the data，select the type of operation you want from the function menu at the bottom of the REG Mode set up display．Press one of the following function keys to display a menu of available operations．
F4（DEV） \qquad Statistical menu
FGI（REG \qquad Regression／estimated value menu

Each of these menus is described in detail below

－Statistical Menu

FA（DEV）
Fil (\bar{x})
\qquad

\qquad Mean of x－data F3）$(x \neq n-1)$ \qquad Population standard deviation of x－data FA）（y） \qquad Sample standard deviation of x－data
F5：（yan） \qquad Mean of y－data

FGE $\left(y \sigma_{n}-1\right)$ \qquad Population standard deviation of y－data
－Sum Data Menu

F5（ E$)$

Sample standard deviation of \boldsymbol{y}－data

［F4］（FI）$\left(\Sigma x^{2}\right)$ \qquad Sum of squares of x－data
F2（ $\Sigma x)$ \qquad Sum of x－data
（ニ） \qquad Number of items
（F4）（ $\left.5 y^{2}\right)$ \qquad Sum of squares of y－data
（ $\mathrm{F}_{5}(\mathrm{E} y)$ \qquad Sum of y－data
［F6（ $\mathrm{E} x y)$ \qquad Sum of products of x－data and y－data
\bar{x} xOn xOn－1 \bar{y} y $y \sigma_{n} y \sigma_{n-1}$2］ ［ E 4 ［F］ F6
－Regression／Estimated Value Menu
FG (REG)

F1（A） \qquad Constant term A F20）（B） \qquad ＇Regression coefficient B
F3（r） \qquad Correlation coefficient r
国（ \hat{x} ） \qquad Estimated value of x
F5）
国(9) Estimated value of y
（Fi］ F3） ［74

4－3 Things to Remember during Statistical Calculations

Anytime you delete，insert，or otherwise edit statistical data，be sure topress 国ir and then （F6）（CAL）to re－calculate the statistical results before inputting new data or performing any other calculation．You șiould also press Emix followed by（F6（CAL）after you delete the statisti－

4－4 Examples of Statistical Calculations

The following are the formulas used by the unit to calculate standard deviation and mean．

－Standard Deviation

$$
\begin{aligned}
& \sigma_{n}=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}}=\sqrt{\frac{\sum x^{2}-\left(\sum x\right)^{2} / n}{n}} \quad\left[\begin{array}{l}
{\left[\begin{array}{l}
\text { Using all data from a finite popu- } \\
\text { lation to determine the standard } \\
\text { deviation for the population }
\end{array}\right]}
\end{array}\right. \\
& \sigma_{n-1}=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}=\sqrt{\frac{\sum x^{2}-\left(\sum x\right)^{2} / n}{n-1}}\left[\begin{array}{l}
\text { Using sample data fromia popus- } \\
\text { tation to determine the standard } \\
\text { deviation for the population }
\end{array}\right]
\end{aligned}
$$

－Mean

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}=\frac{\sum x}{n}
$$

To calculate the deviation of the unbiased variance, the difference between each da-: tum, and mean of the above: data

Determine the following:
P distribution
Q distribution
R distribution
t distribution

To calculate x and on $_{n-1}$ for the following data

Class no.	Value	Frequency
1	$:$	110
2	130	31
3	150	24
4	170	2
5	190	3

To determine Med, Max and Min.

1.982142857

- Regression

The following are the formulas the unituses to calculate constant term A and regression coefficient B , for the regression formula $y=\mathrm{A}+\mathrm{B} x$.

$$
\mathrm{A}=\frac{\Sigma y-\mathrm{B} \cdot \Sigma x}{n} \quad-\mathrm{B}=\frac{n \cdot \Sigma x y-\Sigma x+\Sigma y}{n \cdot \Sigma x^{2}-(\Sigma x)^{2}}
$$

The following is the formula the unit uses to calculate correlation coefficient r and estimated values of x and y.

$$
\begin{aligned}
& r=\frac{n \cdot \Sigma x y-\Sigma x+\Sigma y}{\sqrt{\left(n \cdot \Sigma x^{2}-(\Sigma x)^{2}\right\}\left(n \cdot \Sigma y^{2}-(\Sigma y)^{2}\right\}}} \\
& \hat{y}=\mathrm{A}+\mathrm{B} x \quad \hat{x}=\frac{y \cdot \mathrm{~A}}{\mathrm{~B}} .
\end{aligned}
$$

Linear Regression

Example	Operation	. 2 Display
-Relationship between temperature and the length of a steel bar	© $\boldsymbol{\sigma}$ ㅍI (LIN) [4I 	$\cdots \cdots$

Temperature	Length
$10^{\circ} \mathrm{C}$	1003 mm
$\therefore 15^{\circ} \mathrm{C}$	1005 mm
$20^{\circ} \mathrm{C}$	1010 mm
$25^{\circ} \mathrm{C}$	1041 mm
$30^{\circ} \mathrm{C}$	1014 mm

The data in the above table can be used to obtain the terms of the regression formula and the correlation coefficient. Based on the regression formula, the estimated length of the steel bar at $18^{\circ} \mathrm{C}$ and the temperature when the bar is 1000 mm long can be calculated. The critical coefficient (r^{2}) and covariance
$\left(\frac{\Sigma x y-n \cdot \bar{x} \cdot \bar{y}}{n-1}\right)$
can also be calculated.

Logarithmic Regression

－The logarithmic regression formula is $\dot{y}=\mathrm{A}+\mathrm{B}$－ $\mathrm{ln} x$ ．
$\cdot \Sigma x, \Sigma x^{2}$ ，and $\Sigma x y$ are obtained as $\Sigma \ln x, \Sigma(\ln x)^{2}$ ；and $\Sigma \ln x \cdot y$ respectively．

Example	
$x i$ $y i$ 29 1.6 50 23.5 74 38.0 103 46.4 118 48.9	

The data in the above table can be used to obtain the terms of the regression for－ mula and the correlation coefficient．Based on the regression formula，estimat－ ed value \hat{y} can be obtained for $x i=80$ ，and estimated value \hat{x} can be obtained for $y i=73$ ．

Operation	Display
	\cdots

29 F3（，）1．6国（DT）
50国（，）23．5（F1）
74国（，38．0国（DT）
103国（，）46．4国（DT）
118国（，）48．9国（DT）
（Constant term A$)$ FE（REG）（F0）（A） Pa
（Regression coesficient B） （F2）（B）国
（Correlation coefficient r ） ［FG (r) 班 （ \hat{y} when $x i=80$ ）80 （ \hat{x} when $y i=73$ ）73 F4（ \hat{x} ）国：
0.
3.36729583 3.912023005 4.304065093 4.634728988 4.770684624
\qquad
-111.1283976
34.0201475
0.9940139466 37.94879482
224.1541313

Exponential Regression

－The exponential regression formula is $y=\mathrm{A} \cdot \mathrm{e}^{\mathrm{B}} \cdot x(\ln y=\ln \mathrm{A}+\mathrm{B} x)$ ．
－Σy is obtained as $\Sigma \ln y, \Sigma y^{2}$ as $\Sigma(\ln y)^{2}$ ，and $\Sigma x y$ as $\Sigma x \cdot \ln y$ ．

Example	
$\overline{x i}$	
6.9	
12.9	
19.8	
26.7	
35.1	

The data in the above table can be used to obtain the terms of the regression for－ mula and the correlation coefficient．Based on the regression formula，estimat－ ed value \hat{y} can be obtained for $x i=16$ ，and estimated value \hat{x} can be obtained for $y i=20$ ．

－Power Regression

－The power regression formula is $y=A \cdot x^{B}(\ln y=\ln A+B \ln x)$ ．
－Σx is obtained as $\Sigma \ln x, \Sigma x^{2}$ as $\Sigma(\ln x)^{2}, \Sigma y$ as $\Sigma \ln y, \Sigma y^{2}$ as $\Sigma(\ln y)^{2}$ ，and $\Sigma x y$ as $\Sigma \ln x \cdot \ln y$ ．

Example		Operation	Display
$x i$	$y i$		
28	2410		
30	3033		0.
33	3895		33220451
35	4491		．33220451
38	5717		3．401197382
			3.496507561
The data in the above table can be used to obtain the terms of the regression for－ mula and the correlation coefficient．Based on the regression formula，estimated value．\hat{y}－can be obtained for $x i=40$ ，and estimated value \hat{x} can be obtained for $\overline{y i}=1000$ ．		（F3（，）4491FF1（DT）	3：555348061
		38可（，5717（F1）（DT）	3.63758616
		（Constant term A） ［ $\times 6$（REG） FI （A） （ XE	$0,2388010724$
		（Regression coefficient．	
		：［ a （ (B)［日］	2.771866153
			0.9989062542
			6587.67458
		$(x$ when $y i=1000$ ）1000 FF4（ \hat{x} ）區	20.2622568

Using the Matrix Mode

5－1 Before Performing Matrix Calculations
5－2 Modifying a Matrix
5－3 Matrix Calculations
5－4 Matrix Operation Precautions

Chapter 5 ||| Using the Matrix Mode

This calculator provides you with five variable matrices (Mat A through Mat E) and a special matrix answer memory (Mat Ans) that you can use to perform the following types of calculations. Note that the maximum matrix dimension (size) that can be used is 9×9.

- Addition, subtraction, multiplication
- Scalar products
-Determinants
- Transposed matrices
- Inverted matrices
- Squaring
-Row element calculations (editing)

5-1 Before Performing Matrix Calculations

Before beginning a matrix calculation you have to first enter the correct mode.

To enter the Matrix Mode

Highlight the MAT icon on the Main Menu.

Press 国 5 to display the Matrix Mode.
or 5

The following are the operations that can be selected from the function menu at the bottom of the display. Press the function key below the operation you want to select.

About the Matrix Answer Memory (Mat Ans)

Much like the standard Answer Memory (page 30), the Matrix Answer Memory automatically stores the latest matrix calculation result. Note the following points wheriever you are using the Matrix Answer Memory.

- Whenever you perform a matrix calculation, the values that make up the result are stored using the applicable matrix dimension. Anything previously stored in Matrix Answer Memory is replaced by the new data.
- Matrix Answer Memory contents are not affected by a matrix substitution operation (page 116).

Matrix List

Use the matrix list to specify the size of the matrix you want to use.

- To display the matrix list

While the Matrix Mode is displayed, press [F4 for the matrix list.

The following are the operations that can be selected from the function mentu at the bottom of the display. Press the function key below the operation you want to select.
[F](EPIT) \qquad Recall of a matrix for editing
F2)(DiM) Selting of matrix dimensions
圂(ERS) \qquad Deletion of selected matrix
EA(ER•A) \qquad Deletion of all matrices

Matrix Input

You can use either of the two following methods for matrix input.

- Inputting component data, and then using Θ to directly assign the dafa to a matrix (automatic dimensioning).
- Specifying the dimensions (size) of the matrix. and then inputting data for each component.

－To directly assign data to a matrix

Example To input the following 2×3 matrix as Matrix A ．
$\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$

［ix

－To specify the dimensions of a matrix and then input data：

Example To set up a 2－row $\times 3$－column matrix（Matrix B）and assign the following values to it．

$$
\left(\begin{array}{rrr}
1 & 3 & 5 \\
-2 & 0 & 2
\end{array}\right)
$$

Display the matrix list

F4（LIST）	Mat Det Trn LIST SEE
	（F4）
Use the（ \mathcal{C} ）and $(\nabla$ cursor keys to move the pointer to the matrix you want to use．	MATRIX LIST Mat A $: 2 \times 3$ \rightarrow Mat B ：None EDIT DIW ERE EF•A
	［ 72
［PD（DM） $\begin{gathered}\text {（1）} \\ \cdots\end{gathered}$	MAT B Row：© Coim： 0
Specify the number of rows and columns you want to use，pressing（ 区af after each input	
2）［xe 3 ［逐	MAT B Row：？ Colmi 3
Press［xilit to return to the matrix list．	MATAIX LIST Mat A： 2×3 －Mati日： B ： 2×3

－If the matrix couldn＇t be created because of lack of memory；＂None＂appears in the matrix list in place of the dimension（ 2×3 ）．
－Note that you could end the procedure here if you want to．
After making sure that the pointer is located next to the matrix you want to use，press ［FI）（EDIT）． \qquad
i
：10）
F1（EDIT）

Important

Note that if you input data into a matrix that already contains data, the previous data is replaced with the new data.

Input the value for each cell, pressing 四each time.

After inputting all of the values, press Exiri to return to the matrix list.
-Each cell can hold a value that is six digits long if positive, or five digits long if negative. With exponential display, only one significant digit is used, with everything from the second digit being cut off

- Eight bytes of memory are required for each cell. This means that inputting data into a 3×3 matrix uses up 72 bytes ($3 \times 3=9$ cells $\times 8$ bytes $=72$ bytes) of memory. - You can use the cursor key to move the highlighting around the display.

Deleting Matrices

You can delete a specific matrix or all of the matrices stored in memory.

- To delete a specific matrix

Display the matrix list.
Move the pointer next to the matrix you want to delete
Press E3(ERS).
[F3](ERS)

- To delete all matrices

Display the matrix list.
Press [E4 (ER•A).

$$
\text { [4] }(E R * A)
$$

Press [fi(YES) to delete all matios anything.

5-2 Modifying a Matrix

Once you create a matrix, you can perform any of the following operations to modify it

-Swapping of any two rows

-Calculation of a scalar product

- Scalar product addition
-Substitution and recall of values
-Row delete, insert, add
-Column delete, insert, add

■Before Modifying a Matrix

Before starting work with an existing matrix, you must first select it in the matrix list and then display the matrix editing screen:

- To display the matrix editing screen

Example] To display Matrix A, which contains the following data.
$\left(\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right)$
(MENU(MAT) EXE
FA(LIST)
FI(EDIT)

[F] [F2] [F3

The following are the operations that can be selected from the function menu at the bottom of the display. Press the function key below the operation you want to select.

可(R.OP) \qquad Display of menu for swapping of rows, scalar products and addition
(R2)(ROW) \qquad Display of menu for deleting, inserting, and adding rows
[3 (COL) \qquad Display of menu for deleting, inserting, and adding columns

- Row Operations

The row operations menu lets you swap any two rows, calculate scalar products, add scalar products to another row, and add rows together. Use the following procedure to display the row operation-menu.

- To display the row operation menu

In the Matrix Mode, display the matrix list and select the matrix you want to work with.
FA](LIST)C

Display the matrix editing screen.
F1 (EDIT)

Display the row operation menu.

$$
\text { F1 }(R \cdot O P)
$$

The following are the operations that can be selected from the function menu at the bottom of the display. Press the function key below the operation you want to select.

FI(RSw) \qquad Swapping of rows 国 (\times R $)$ \qquad Calculation of scal [73) $\times R+$) \qquad Addition of the sc [FA ($\mathrm{R}+$ + \qquad Addition of one ro	

Pressing EuII returns to the matrix editing menu.

- To swap two rows

Example To swap rows two and three in the following matrix (Matrix A).

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right)
$$

Perform the following operation while in the Matrix Mode.

$$
\begin{aligned}
& \text { F4 (LIST) FI(EDIT) } \\
& \text { [F1(} \mathrm{A}: \mathrm{OP} \text {) } \mathrm{FI}(\mathrm{RSW})
\end{aligned}
$$

Input the numbers of the rows you want to swap.

```
2) EX
3) ExE
```


- To calculate a scalar product for a row

Example To catculate a scalar product of row 2 of the following matrix (Matrix A), by multiplying each element by 4.

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right)
$$

Perform the following operation while in the Matrix Mode

$$
\begin{aligned}
& {[\mathrm{Fa}(\mathrm{LIST})[\mathrm{F}](\mathrm{EDIT})} \\
& {[\mathrm{FT}(\mathrm{R} \cdot \mathrm{OP}) \mathrm{F} 2(\times \mathrm{R})}
\end{aligned}
$$

$k ?$ $k \times$ Rōw m \rightarrow Row m
nput the nu you want to calculate.

- To add the scalar product of one row to another row

ExampleTo calculate a scalar product of row 2 of the following matrix (Matrix A), by multiplying each element by 4 , and then add the results to row 3 an

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & \frac{4}{4} \\
5 & 6
\end{array}\right)
$$

Perform the following operation while in the Matrix Mode.

$$
\begin{aligned}
& \text { FG](LIST) FT1(EDIT) } \\
& \text { [F1 }(R \cdot O P) \text { (F3) }\left(\times R_{+}\right)
\end{aligned}
$$

Input the numbers you want to multiply by, followed by the number of the row whose scalar product you want to calculate, and then the number of the row you want the results added to.
(4) ExE
2 EXE
3 EXE

- To add one row to another

Example To add row 2 to row 3 in the following matrix (Matrix A), and store the result in row 3.

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right)
$$

Perform the following operation while in the Matrix Mode-:

$$
\begin{aligned}
& \mathrm{F4}(\mathrm{LIST}) \mathrm{F}(\mathrm{EDIT}) \\
& \mathrm{F}(\mathrm{R} \cdot \mathrm{OP}) \mathrm{F4}(\mathrm{H}+)
\end{aligned}
$$

- To directly substitute value in a matrix cell

Example To substitute a value of 10 in row 1 column 2 of the following matrix (Matrix A).

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right)
$$

Perform the following operation while in the Matrix Mode.

$$
\begin{aligned}
& \text { [14 } A \text { [}
\end{aligned}
$$

The following is the basic format for the above procedure
Mat $X[r, c]$
$X=$ Matrix name (A through E, or Ans)
r = row number
$c=$ column number

- To perform an arithmetic operation using a matrix value

Example] To multiply the value located at row 2, column 2 in the following matrix (Matrix A) by 5.

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right)
$$

Perform the following operation while in the Matrix Mode.

F1 (Mat)	
区 5 國	

4.

Mat $A[2,2]$
4. $\times 5$
4.
20.

Deleting, Inserting, and Adding Rows

Use the following procedures to delete, insert and add rows in a matrix.
Before starting a row delete, insert or add operation, you must first select the matrix you want to work with and then press [20)(ROW) to display the row editing screen.

First, select and recall the matrix you want to edit.

```
M[-WM(MAT) EXE
[44(LIST) F|(EDIT)
```

Next, press E2(ROW) to display the row editing screen:

IDEL INS ADD <ROW> (F1) F2 F3

The following are the operations that can be selected from the function menu at the bottom of the display. Press the function key below the operation you want to select.
(F1)(DEL)
 Row deletion
(F2)(INS) \qquad Row insertion
[F])(ADD)Row addition
Pressing (⿷inl returns to the matrix editing menu.

- To delete a row

Example To delete row 2 of the following matrix (Matrix A).

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right)
$$

Perform the following operation while in the Matrix Mode.

$$
\begin{aligned}
& \text { F4 (LIST) } \mathrm{FT}(\text { EDIT }) \\
& \text { F2 }(\text { ROW })
\end{aligned}
$$

Move the highlighting into the row you want to delete

Perform the delete operation:
F1(DEL)

- To insert a row

Example To insert a row between rows 1 and 2 of the following matrix (Matrix A).

 $\left(\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right)$Perform the following operation while in the Matrix Mode.

$$
\begin{aligned}
& \text { F4 (LIST) F1)(EDIT) } \\
& \text { E-2 }(\text { ROW })
\end{aligned}
$$

Move the highlighting into the row that you want to be below the newly inserted row.

$$
\text { DEL INS } \sqrt{A D D}<\text { ROW }>
$$

Perform the insert operation
F2(INS)

- To add a row

Example To add a row below row 3 of the following matrix (Matrix A)

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right)
$$

Perform the following operation while in the Matrix Mode.

$$
\begin{aligned}
& \text { E4(LIST) F1 (EDIT) } \\
& \text { F2 }(\text { ROW) }
\end{aligned}
$$

Move the highlighting into the row that you want to be above the newly added row.

Periorm the add operation.
[F3(ADD)

Celeting, Inserting, and Adding Columns

Use the following procedures to delete, insert and add columns in a matrix.
Before starting a column delete, insert or add operation, you must first select the matrix you want to work with and then press $\operatorname{Fa}(\mathrm{COL})$ to display the column editing screen.

First, select and recall the matrix you want to edit.

$$
\begin{aligned}
& \text { WEND (MAT) ExE } \\
& \text { E4(IIST) F1.(EDIT) }
\end{aligned}
$$

Next, press $\operatorname{Fa}(C O L)$ to display the column editing screen.

> IDEL $\sqrt{\text { INS }} \sqrt{A D D}<$ COLLUMN $>$
> (F1) [F2] F3]

The following are the operations that can be selected from the function menu at the bottom of the display. Press the function key below the operation you want to select
FI(DEL) \qquad Column deletion
F2(INS) \qquad Column insertion
[6](ADD) \qquad Column addition

Pressing [0]II returns to the matrix editing menu.

- To delete a column

Example To delete column 2 of the following matrix (Matrix A).

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right)
$$

Perform the following operation while in the Matrix Mode.
[$\mathrm{F4}$ (LIST) (F1(EDIT)
[53(COL)
Move the highlighting into the column you want to delete.

Perform the delete operation.

F1(DEL)
F1(DEL)

- To insert a column

Example To insert a column between columns 1 and 2 of the following matrix

 (Matrix A)$$
\because\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right)
$$

Perform the following operation while in the Matrix Mode.

$$
\begin{aligned}
& \therefore \quad \text { F4(LIST) F1(EDIT) } \\
& \therefore \quad \text { F3(COL) }
\end{aligned}
$$

Move the highlighting into the column that you want to be to the right of the newly inserted column.

Perform the insert operation:

$$
-\mathbf{F 2}(\mathbb{N} S)
$$

- To add a column

Example

To add a column to the right of column 2 of the following matrix (Matrix A).

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right)
$$

Perform the following operation while in the Matrix Mode.

$$
\begin{aligned}
& \text { F4(LIST) F1(EDIT) } \\
& \text { F } 3(\mathrm{COL})
\end{aligned}
$$

Move the highlighting into the column that you want to be to the left of the newly added column:-:

[DEL $/ \operatorname{NS} \cdot \overline{A D D}$ <COLUMN>

Perform the add operation.
F3(ADD)

1 $213025-28$

5-3 Matrix Calculations

This section describes how to actually perform matrix calculations. To perform a calculation, you must press the Matrix Mode function key (page 98) that puts in the correct calculation mode. The following shows the modes you can enter and the function keys you should press to enter the modes.
F1(Mat) \qquad For specification of matrix type
F2)(Det) \qquad Determinant
Fs(Tri) \qquad Transformation

- Arithmetic Operations

Use the procedures described here to add, subtract, and multiply matrices. Note that you cannot use division with matrices.

- To add matrices

Example To add the following two matrices.

Matrix A	Matrix B
$\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right)$	$\left(\begin{array}{ll}2 & 3 \\ 2 & 1\end{array}\right)$

Perform the following operation while in the Matrix Mode.
F1(Mat)

Input the name of the first matrix.

$$
\begin{gathered}
\text { MPALA] }[A] \\
F 1(M a t)
\end{gathered}
$$

Input the name of the second matrix.
$\because \triangle B$

Mat Det Tri LIST SEE
F1

Execute the operation and display its result.

Mat Det Trin LIST SEE

The display shows that Matrix $\mathbf{A}+$ Matrix $\mathbf{B}=\left(\begin{array}{ll}\mathbf{3} & \mathbf{4} \\ \mathbf{4} & \mathbf{2}\end{array}\right)$
*The dimensions (sizes) of the two matrices being added must be identical. If you try to add matrices of different dimensions; a "Dim ERROR" will occur.
-The result of an addition operation is also stored in the Matrix Answer Memory (Mat Ans), automatically replacing any data previou'sly stored there.
"You can also store the result of a matrix addition operation into a third matrix (page 116). When you do so, the result is not stored in the Matrix Answer Memory,

- To subtract matrices

Example To subtract Matrix B from Matrix A. The following shöws the contents of the two matrices.

Matrix A	Matrix B
$\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right)$	$\left(\begin{array}{ll}2 & 3 \\ 2 & 1\end{array}\right)$

Perform the following operation while in the Matrix Mode.
FT(Mat)

Input the name of the matrix you want to subtract from:

$$
\begin{aligned}
& \text { F1(Mat) }
\end{aligned}
$$

Input the name of the matrix you want to subtract.

Hixim

Mat Det Tim LIST SEE
Execute the operation and display its result.

EXE

The display shows that Matrix $\mathbf{A}-$ Matrix $\mathbf{B}=\left(\begin{array}{rr}-1 & -2 \\ 0 & 0\end{array}\right)$.
*The dimensions (sizes) of the two matrices being subtracted must be identical. If you try to subtract matrices of different dimensions, a 'Dim ERROR" will occur.
*The result of an subtraction operation is also stored in the Matrix Answer Memory (Mat Ans), automatically replacing any data previously stored there.

You can also store the result of, a matrix subtraction operation into a third matrix (page 116). When you do so, the result is not stored in the Matrix Answer Memory.

- To multiply matrices

Example To multiply Matrix B by Matrix.A. The following shows the contents of the two matrices.

Matrix A	Matrix B
$\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right)$	$\left(\begin{array}{ll}2 & 3 \\ 2 & 1\end{array}\right)$

Perform the following operation while in the Matrix Mode.
FI(Mat)

Input the name of the matrix you want to multiply:


```
F1(Mat)
```

Input the name of the matrix you want to multiply by.
北际
Mat AxMat B

Execute the operation and display its result.
Mat Det Trn LIST SEE
[F]

The display shows that Matrix $A \times$ Matrix $B=\left(\begin{array}{ll}4 & 4 \\ 6 & 7\end{array}\right)$.
*The dimensions (sizes) of the two matrices being multiplied must be-identical. If you try to multiply matrices of different dimensions, a "Dim ERROR" will occur.
*The result of a multiplication operation is also stored in the Matrix Answer Memory (Mat Ans), automatically replacing any data previously stored there.
*You can also store the result of a matrix multiplication operation into a third matrix (page 116). When you do so, the result is not stored in the Matrix Answer Memory.

- To store the result of an arithmetic operation in a third matrix
\qquad To add the following two matrices and store the result in Matrix \mathbf{E}.

Matrix A	Matrix B
$\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right)$	$\left(\begin{array}{ll}2 & 3 \\ 2 & 1\end{array}\right)$

Perform the following operation while in the Matrix Mode.

F1(Mat)

input the name of the first matrix.

$$
A
$$

\mp

- You could also press $\boldsymbol{\square}$ (for subtraction) or \boldsymbol{X} (for multiplication) here.
FI(Mat)

Input the name of the second matrix.

$$
\operatorname{ABCO}
$$

:
-_ ..

Name the matrix where you want the result stored.

$$
\rightarrow E \text { (Mat) }
$$

Execute the operation and display the matrix where the result is stored

-The result of the above operation is not stored in the Matrix Answer Memory.

nCalculating a Scalar Product

To calculate a scalar product, you specify the multiplier and then the matrix name (Matrix A to Matrix E, or Mat Ans). Next you press the 眶 key to perform the multiplication:

- To calculate a scalar product \qquad Example To calculate the scalar product for the following matrix (Matrix A) by multiplying by 4 .

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

Perform the following operation while in the Matrix Mode.

Input the multiplier

Specify the name of the matrix you want to multiply.

F1(Mat) MAPM

Execute the operation and display the matrix where the result is stored.

텉

4Mat A

Mat DEt Trin LIST SEE
[F1]

The display shows that the scalar product of Matrix A is $\left(\begin{array}{cc}4 & 8 \\ 12 & 16\end{array}\right)$.
*The result of a scalar product operation is also stored in the Matrix Answer Memory (Mat Ans), automatically replacing any data previously stored there.
*You can also store the result of a scalar product operation into a third matrix (see below). When you do so, the result is not stored in the Matrix Answer Memory.

- To store the result of a scalar product operation in another matrix

Example To calculate the scalar product for the following matrix (Matrix A) by multiplying by 4 , and store the result in Matrix E.

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

Pertorm the following operation while in the Matrix Mode.
(4) F1)(Mat) (xMy

Name the matrix where you want the result stored. \rightarrow Fi](Mat) [胸 E

Execute the operation and display the matrix where the result is stored.

-The result of the above operation is not stored in the Matrix Answer Memory.

Determinants

Determinants are calculated automatically using the formulas shown below. Nate that after you calculate a determinant, you can assign it to a value memory.

- 2×2 matrix

$$
|A|=\left(\begin{array}{ll}
a_{15} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

$$
=a_{11} a_{22}-a_{12} a_{21}
$$

-3 x 3 matrix

$$
|\mathrm{A}| \equiv\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

$$
=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-
$$

$$
a_{13} a_{22} a_{31}
$$

- To calculate a determinant

Example To calculate the determinant for the following matrix (Matrix A).

$$
\left(\begin{array}{rrr}
1 & 2 & 3 \\
4 & 5 & 6 \\
-1 & -2 & 0
\end{array}\right)
$$

Perform the following operation while in the Matrix Mode.

$$
\begin{aligned}
& \text { F2)(Det) } \\
& \text { (F1](Mat) }
\end{aligned}
$$

Input the name of the matrix whose determinant you want to calculate

IIPMA.

Execute the operation and display the result.

MEE DET TTM LIST SEE (F1) F2

The display shows that the determinant of Matrix $\mathbf{A}=\mathbf{- 9}$.
*Note that you can calculate the determinant for square matrices (same number of rows and columns) only: Attempting to invert a matrix that is not square results in a "Dim ERROR."
*The result of an invert operation is also stored in the Matrix Answer Memory (Mat Ans), automatically replacing any data previously stored there.

- To calculate a determinant and assign the result to a value memory

Example To calculate the determinant for the following matrix (Matrix A), and as. sign the result to value memory A.

$$
\left(\begin{array}{rrr}
1 & 2 & 3 \\
4 & 5 & 6 \\
-1 & -2 & 0
\end{array}\right)
$$

Perform the following operation while in the Matrix Mode.

$$
\begin{aligned}
& \text { F2](Det) } \\
& \text { F1 (Mat) }
\end{aligned}
$$

input the name of the matrix whose determinant you want to calculate IIPR A

Assign the result to the value memory.

```
\square\[|PM
```

- You can assign the result to any value memory: A through Z, r, or θ.

Execute the operation and assign the result.
[医 E

$$
\text { Det Mat } \mathrm{A} \rightarrow \mathrm{~A} \quad-9
$$

-Transposing a Matrix

Transposing a matrix causes its rows to become columns and its columns to become rows. You can transpose any matrix in the matrix list (Matrix A through Matrix E) or the matrix in the Matrix Answer Memory.

- To transpose a matrix

Example To transpose the following matrix (Matrix A).

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right)
$$

Perform the following operation while in the Matrix Mode.
F3(Trn)

Specify the name of the matrix you want to transpose.

Execute the operation and display the transposed
matrix.

The display shows that transposing Matrix A produces $\left(\begin{array}{ccc}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right)$.
*The result of a transpose operation is also stored in the Matrix Answer Memory (Mat Ans), automatically replacing any data previously stored there.

* You can also store the result of a transpose operation into a third matrix (see below). When you do so, the result is not stored in the Matrix Answer-Memory.
- To store the result of a transpose operation in another matrix

Example To transpose the following matrix (Matrix A), and store the result in Matrix

 E.$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right)
$$

Perform the following operation while in the Matrix Mode.

Name the matrix where you want the result stored.

\rightarrow F1(Mat)

Execute the operation and display the matrix where the result is stored. : : :

The result of the above operation is not stored in the Matrix Answer Memory.

EInverting:a Matrix

Matrices are inverted automatically according to the following rules, where A is a matrix and A^{-}is its inverse.

- A matrix being inverted must satisfy the following conditions

$$
A \cdot A^{-1}=A^{-1} A=E=\left(\begin{array}{ll}
1 & 0 \tag{3}\\
0 & 1
\end{array}\right)
$$

-The following shows the formula use to invert Matrix A, shown below, into inverse matrix A^{-1}.

$$
\begin{align*}
\therefore A & =\left(\begin{array}{ll}
a & b \\
\mathbf{c} & d
\end{array}\right) \tag{x}\\
\mathbf{A}^{-1} & =\frac{1}{\mathbf{a d}-\mathbf{b} \mathbf{c}} \quad\left(\begin{array}{cc}
d & -\mathbf{b} \\
-\mathbf{c} & \mathbf{a}
\end{array}\right)
\end{align*}
$$

In the above: $a d-b c \neq 0$

- To invert a matrix

Example To invert the following matrix (Matrix A).

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

Perform the following operation while in the Matrix Mode.
Specify the name of the matrix you want to invert.

$$
\text { F1 (Mat) ABP䐓 } A
$$

Specify matrix inversion.

$$
\text { Mat } A^{-1}-
$$

Mat Det Tгп LIST SEE

Execute the operation and display the inverted matrix.

The display shows that inverting Matrix A produces $\left(\begin{array}{cc}-2 & 1 \\ 1.5 & -0.5\end{array}\right)$.
*Note that a matrix cannot be inverted if ad - bc $=0$ (which makes the determinant zero). Attempting to invert such a matrix results in an "Ma ERROR."
*Note that you can only invert square matrices, which have the same number of rows and columns. Attempting to invert a matrix that is not square results in a "Dim ERROR."
*The result of an invert operation is alsso stored in the Matrix Answer Memory (Mat Ans), automatically replacing any data previously stored there.
*You can also store the result of a invert operation into a third matrix (see below). When you do so, the result is not stored in the Matrix Answer Memory.

- To store the result of an invert operation in another matrix

Example To invert the following matrix (Matrix A), and store the result in Matrix E.

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

Perform the following operation while in the Matrix Mode:

$$
F 1(\text { Mat }) \operatorname{APM} A
$$

Name the matrix where you want the result stored.
\rightarrow (F1)(Mat)
Execute the operation and display the matrix where the result is stored.

The result of the above operation is not stored in the Matrix Answer Memory.

■Squaring a Matrix

Use the operations described below to square a matrix.

- To square a matrix

Example To square the following matrix (Matrix A).

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

Perform the following operation while in the Matrix Mode.
Specity the name of the matrix you want to square.

Specify squaring.

Mat A^{2} _

Met Det Tm LET SEE

F1
Execute the operation and display the squaring matrix.

The display shows that-squaring Matrix A produces $\left(\begin{array}{rr}7 & 10 \\ 15 & 22\end{array}\right)$.
*The result of an squaring operation is also stored in the Matrix Answer Memory (Mat Ans), automatically replacing any data previously stored there.
*You can also store the result of a squaring operation into a third matrix (see below). When you do so, the result is not stored in the Matrix Answer Memory.

- To store the result of an squaring operation in another matrix

Example To square the following matrix (Matrix A), and store the result in Matrix E.

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

Perform the following operation while in the Matrix Mode.

Name the matrix where you want the result stored.
\triangle F1)(Mat)

Execute the operation and display the matrix where the result is stored.

The result of the above operation is not stored in the Matrix Answer Memory.

5-4 Matrix Operation Precautions

-Calculation of determinants and inverse matrices uses the elimination method, so errors (such as dropped digits) may be generated.

- If a matrix calculation result becomes too large to fit into the Matrix Answer Memory (Mat Ans) a "Mem ERROR" occurs.
Matrix operations are performed individually on each element, and so calculation may require considerable time.
-The calculation precision of matrix calculations is 10 digits, ± 1.

Equation Calculations

6-1 Before Beginning an Equation Calculation
6-2 Linear Equations with Two Unknowns
6-3 Linear Equations with Three Unknowns
6-4 Quadratic Equations

Chapter 6

Your graphic calculator can solve the following three types of equations:

- Linear equations with two unknowns
-Linear equations with three unknowns
-Quadratic equations

6-1 Before Beginning an Equation Calculation

Before beginning an equation calculation you have to first enter the correct mode, and you must also clear the equation memories of any data that might be left over from a previous calculation.

■To Enter an Equation Calculation Mode

Highlight the EQUA icon on the Main Menu:

Press 国 or 77 to display the Equation (EQUA) Mode.

To clear the equation memories

Use the following procedure to clear the equation memories prior to performing a calculation, etc.
Press one of the function keys ((FI)(Sl2) (Fs)(PLY))
(F3)
— FBI(ERS)
YES ERASE EQUATI ONNN O
(F)

Press $\operatorname{Fi}(Y E S)$ to clear the equation memories, or $\operatorname{FG}(N O)$ to abort the clear operation without clearing anything.

6-2 Linear Equations with Two Unknowns

You can use the procedures described here to solve linear equations with two unknowns that match the following formats (when $a_{1} b_{2}-b_{1} a_{2} \neq 0$):

$$
\begin{aligned}
& a_{1} x+b_{1} y=c_{1} \\
& a_{2} x+b_{2} y=c_{2}
\end{aligned}
$$

-To Enter the Linear Equation Mode for Two Unknowns

The following are the operations that are available from the function menu at the bottom of the display. Press the function key below the operation you want to perform
FT(SOL) \qquad Solves the equation
F2(CLR) \qquad Clears all input coefficients
[-6)(ERS) inputting a new equation.

To Solve a Linear Equation with Two Unknowns

Example
To solve the following linear equations for x and y ： $2 x+3 y=8$
$3 x+5 y=14$
input each coefficient．

> 2 EXE 3 EXE 8 EXE $3]$ EXE 5 EXE 1 EXE
－Each time you press 圌；the input value is registered in the highlighted cell．Each press of 国 inputs values in the following sequence：
coefficient $a_{1} \rightarrow$ coefficient $b_{1} \rightarrow$ coefficient $c_{1} \rightarrow$
coefficient $a_{2} \rightarrow$ coefficient $b_{2} \rightarrow$ coefficient c_{2}
－You can input fractions and value memory contents as coefficients．
After inputting the coefficients，solve the equations．：

FI（SOL）
－Pressing the 四条 key causes the value in the highlighted cell to switch between fraction and decimal formats．Any time calculation causes a value to exceed the allowable range for fraction display，the value automatically changes to decimal format．
－Internal calculations are performed using a 13 －digit mantissa，but results are displayed using a 10 －digit mantissa and 2－digit exponent．
－An＂Ma ERROR＂occurs whenever the unit is unable to solve the equations
－Pressing（E1（RPT）returns to the initial display of the Linear Equation Mode for two unknowns．
\qquad
\qquad

（FI） いnルown．

6－3 Linear Equations with Three Unknowns

Use the procedures described here to solve linear equations with three unknowns that match the following formats（when $a_{1} b_{2} c_{3}+a_{3} b_{1} c_{2}+a_{2} b_{3} c_{1}-c_{1} b_{2} a_{3}-c_{2} b_{3} a_{1}-c_{3} b_{1} a_{2} \ddagger 0$ ）： $a_{1} x+b_{1} y+c_{1} z=d_{1}$
$a_{2} x+b_{2} y+c_{2} z=d_{2}$
$a_{3} x+b_{3} y+c_{3} z=d_{3}$

ETo Enter the Linear Equation Mode for Three Unknowns

To Solve a Linear Equation with Three Unknowns

Example
To solve the following linear equations for x, y ，and z ：
$4 x+y-2 z=-1$
$x+6 y+3 z=1$
$-5 x+4 y+z=-7$

Input each coefficient．

4 ExE	1	ExE	（－）	2		（－）	1		ExE
（1）Exe	6	ExE	3	ExE	1	ExE			
（ -3	ExE	4	Ex］	1	EXE	（－）	7		ExE

－Each time you press 区ax，the input value is registered in the highlighted cell．Each press of ExE inputs values in the following sequence：
coefficient $a_{1} \rightarrow$ coefficient $b_{1} \rightarrow$ coefficient $c_{1} \rightarrow$ coefficient $a_{1} \rightarrow$ coetficient $a_{2} \rightarrow$ coefficient $b_{2}: \rightarrow$ coefficient $c_{2} \rightarrow$ coefficient $d_{2} \rightarrow$ coefficient $a_{3} \rightarrow$ coefficient $b_{3} \rightarrow$ coeffictent $c_{3} \rightarrow$ coefficient d_{3}
－You can input fractions and value memory contents as coefficients．

After inputting the coefficients，solve the equations．

F
－Pressing the 图 key causes the value in the highlighted cell to switch between fraction and decimal forms．Any time calculation causes a value to exceed the allowable range for fraction display，the value automatically changes to decimal format．
－Internal calculations are performed using a 13 －digit mantissa，but results are displayed using a 10 －digit mantissa and 2 －digit exponent．
－An＂Ma ERROR＂occurs whenever the unit is unable to solve the equations．
－Pressing FI（RPT）returns to the initial display of the Linear Equation Mode for three unknowns．

Depending on the coefficients that you use，it may take considerable time for the calculation result of simultaneous linear equations with three unknowns to appear on the display．Failure of a result to appear immediately does not mean that the unit is not functioning properly．

6－4 Quadratic Equations

This calculator can also solve quadratic equations that match the following format（when $a \neq 0$ ）：
$a x^{2}+b x+c=0$
－To Enter the Quadratic Equation Mode

［MENU（EQUA）EXE（or 7 ）	$a X^{2}+b X+c=0$
F3）（PLY）\quadCells for input of cooeficients	$1\left[\square \frac{a}{0}-0\right]$
Value being input to the highlighted cell－	\square
	［SDL CLR ERS

To Solve a Quadratic Equation

Example．To solve the following quadratic equation：
 $$
2 x^{2}+x-10=0
$$

Input each coefficient．

（2）EXE 1 EXE（ -9 EX

－Each time you press 迋，the input value is registered in the highlighted cell．Each press of 区xa inputs values in the following sequence：

coefficient $a \rightarrow$ coefficient $b \rightarrow$ coefficient c

－You can input fractions and value memory contents as coefficients．
After inputting the coefficients，solve the equations．

FI（SOL）

（F1）
－Pressing the 囷 key causes the value in the highlighted cell to switch between fraction and decimal forms．Any time calculation causes a value to exceed the allowable range for fraction display，the value automatically changes to decimal format
－Internal calculations are performed using a 13 －digit mantissa，but results are displayed using a 10 －digit mantissa and 2 －digit exponent．
＊An＇Ma ERROR＂occurs whenever the unit is unable to solve the equations． ：Pressing F（RTP）returns to the initial display of the Quadratic Equation Mode

Quadratic Equations that Produce Single-value Solutions or Imaginary Number Solutions
The following examples illustrate how single-value solutions and imaginary number solutions.

- To solve a quadratic equation that produces a single-value solution

Example To solve the following quadratic equation: $x^{2}+2 x+1=0$

- To solve a quadratic equation that produces an imaginary number soIution

Example To solve the following quadratic equation: $x^{2}+x+1=0$

-When a solution includes real and imaginary number parts, you can use the cursor keys to move the highlighting around the display to check each value individually.

■Changing Coefficients

You can change a coefficient either before or after you register it by pressing 国.
Note that the following procedure applies to simultaneous linear equations with two or three unknowns, and to quadratic equations.

- To change a coefficient before registering it with

Press the ace key to clear the current value and then input another one.

- To change a coefficient after registering it with ©

Use the cursor keys to highlight the cell that contains the coefficient that you want to change. Next, input the value that you want to change to.

To Clear All the Coefficients

Note that the following procedure applies to simultaneous linear equations with two or three unknowns, and to quadratic equations.

Press the 国(CLR) function key.

```
SOL [CLF ERS
```


F

This operation clears all the coefficients to zero.

What to Do When an Error Occurs

Note that the following procedure applies to simultaneous linear equations with two or three unknowns, and to quadratic equations.

- Error during coefficient value input

Press the AC key to clear the error and return to the value that was registered for the coefficient before you input the value that generated the error. Try inputting a new value again.

- Error during calculation

Press the $\mathbb{A C}$ key to clear the error and display coefficient a. Try inputting values for the coefficients again.

- Note that even when you press the AC key, the values assigned for coefficients are retained.

Graphing

7-1 About the Graphing Function
7-2 Rectangular Coordinate Graphs
7-3 Polar Coordinate Graphs
7-4 Parametric Graphs
7-5 Inequality Graphs
7-6 Integration Graphs
7-7 Probability Distribution Graphs
7-8 Single-Variable Statistical Graphs
7-9 Paired-Variable Statistical Graphs
7-10 Storing Functions In Memory
7-11 Other Graph Functions
7-12 Some Graphing Examples

This chapter explains everything you need to know to fully use the versatile graphing capabilities of the unit.

7-1 About the Graphing Function

The large 95×63 dot display of the unit provides you with the capability to graph the following:

Rectangular coordinates
 Polar coordinates

Parametrics

Inequalities

Integrations
Probability distributions
Single-variable statistics
Paired-variable statistics
These graphs can be produced using manual input or by programs.
You should enter the COMP, SD, REG, MAT or GRAPH Mode for drawing graphs. Here, we will start our explanation of graph drawing using the COMP Mode.

-Specifying the Range of a Graph

Before you draw a graph, you must first use the Range Parameter Screen to specify the range parameters of the graph.

- To display the Range Parameter Screen

Rectangular Coordinate Range Screen

[atab

$\vdots \quad$| Range |
| :--- |
| T, |
| \vdots |

T, θ max - minimum value of $\mathrm{T} / \theta-$
T, θ pitch - pitch of $\mathrm{T} / \theta-$
 T, θ max:360 ptch: 3

IINTT TRG

To specify range parameters

Example
To specity the following range parameters

$X \min$	0	
$X_{\max }$	5	
$X_{\text {scl }}$	1	
$Y \min$	-5	
$Y \max$	15	
$Y \operatorname{Yscl}$	5	
$\mathrm{~T}, \theta \min$	0	
$\mathrm{~T}, \theta \max$	4π	
$\mathrm{~T}, \theta$ ptch	$\pi \div 36$	

(1) 0 国

$$
\begin{aligned}
& \text { Range } \\
& \text { Xmin: } 0 \\
& \text { max: } 5 . \\
& \text { scl: } \overline{\text { S. }} \\
& \text { Ymin: } 10 \text {. } \\
& \text { max: } 10 . \\
& \text { scl:5. } \\
& \text { |INTT TRG }
\end{aligned}
$$

(3)
Range
Xmi: 0
max:5
Sc 1: 1
Ymin: $=10$.
$\max : 10$.
scl:5.
INTTAG
(2)

Range

Xmin:

max:5.
scl:ㄹ.
Ymin: -10.
max:10.
scl:5.
$\sqrt{\text { INTT }} \mid \overrightarrow{T R G}$
(4) (1) 5 區

$$
\begin{aligned}
& \text { Range } \\
& \text { Xmin: } \\
& \text { max:5. } \\
& \text { scl: } 1 \\
& \text { Ymin:-5: } \\
& \text { max: } 10 . \\
& \text { sc 1:5. } \\
& \text { INTT } \mid \overline{T R G}
\end{aligned}
$$

(5) (1) 5

Range
 Xmin:
 max:5.
 scl:1
 max:
 sci:5.
 INTT TRG

(7)

(6) ExE

Range
 T. θ
 min: 0.
 max:350

ptch:3.6
$\sqrt{\text { IINT }} \sqrt{T A G}$

(8) [4] [्nlifi

T, Pange
ptch:3.6
T

Range
 T. 0

min: 0 .
max: 4π
otch: $\pi \div 36$

INTT TAG
 can use nimu to contirm that your parameters are correct.

(11) 1 ImP

Range
min: 0 .
max:12. 5663706
otch:0.087266462
$\sqrt{\operatorname{INT} T / T R G}$

Note that the π and division operations we entered above have been automatically converted to the correct values.

- You can set range parameters within the range of $-9.9999 \mathrm{E}+97$ to $9.99999 \mathrm{E}+97$.
input values can have up to nine significant digits. Values less than 10^{-2} and greater than 10^{7} are displayed with a 6 -digit mantissa (including the negative sign) and a 2 -digit exponent.
- The only input that is valid for range parameter input are numbers from-0 through 9 ,
 5hnf (aim), but no other key operation is valid. Note that negative values are indicated us-

ing or \boldsymbol{E}

- You cannot specify 0 for Xiscl or Ysol.
- Do not specify the same value for the minimum and maximum
-If you input an illegal value, the previous parameter is retained without change
-If a minimum is greater than a maximum parameter, the axis is inverted

Example Xmin :5
 Xmax:-5

 to the right of the cursor position is not input.

$$
\begin{aligned}
& \text { Range } \\
& \text { Xmin: }=25 . \\
& \text { max: }
\end{aligned}
$$

```
Range
Xmin:-乌5.
    max:25.
```

3

> Range
> Xmin: -35.
> $\max : 25$.

EXE

> Range $\times \min :-3$
> $\max :-5$

- You can input range parameters as expressions (such as 2π).
-When a range setting that does not allow display of the axes is used, the scale for the y-axis is indicated on either the left or right edge of the display, while that for the x-axis is indicated on either the top or bottom edge.
When range values are changed, the graph display is cleared and the newly set axes only are displayed.
－Range setting may cause irregular scale spacing． \qquad If the range is set too wide，the graph produced may not fit on the display，，ms －The point of deflection sometimes exceeds the capabilities of the display with graphs that change drastically as they approach the point of deflection．
－Arange that is too small can cause an Ma ERROR，

－Initializing the Range Parameter Display Settings

\qquad

There are two methods that you can use to initialize the Range Parameter Display settings．

$$
\begin{aligned}
& \text { Range } \\
& \text { Xmin: } 4: 7 \\
& \text { max:A. } \\
& \text { sal: } 1 . \\
& \text { Ymin:-3. } 1 \\
& \text { max: 3. } 1 \\
& \text { sal: } 1 . \\
& \text { INT TRG }
\end{aligned}
$$

－Rantef（TRG）

This operation performs intialization in accordance with the current unit of angular mea． surement mode（Deg，Rad，or Gra）．This initialization operation is helpful when drawing trigonometric graphs．

Rad Miode

Range

Xmin：ニG．28318531 $\max : 6.28318531$ scl：3． 14159265

> Gra Mode
> Range
> Xmin: $=40 \square$.
> max: $\overline{4} \square \square$.
> scl: 2ロロ.

T，θ min，$T, \theta \cdot$ max $_{,}$and t, θ pitch are not affected when you press 苗（TRG）．
－To specify range parameters within a program
Use the following format to specify range parameters in a program
Range（value of $X \mathrm{~min}$ ），（value of $X \mathrm{max}$ ），（value of $X \mathrm{scl}$ ） （value of Y_{min} ），（value of $Y_{\max }$ ），（value of Y_{sc} ） （value of $\left.T_{i}^{\prime} \theta \mathrm{min}\right)$ ，（value of T, θ max），（value of T ，opitch）

7－2 Rectangular Coordinate Graphs

You can use the unit to draw rectangular coordinate graphs after you specify the REC Mode． When drawing rectangular coordinate graphs，remember that the unit uses value memories X and \mathbf{Y} to store values．Do not use these memories for storage if you plan to draw rec－ tangular coordinate graphs．

■Graphing Built－in Scientific Functions

The following is a list of the buili－in scientific functions that you can graph．

$\bullet \sin x$	$\cdot \cos x$	$\bullet \tan x$	$\bullet \sin ^{-1} x$	$\bullet \cos ^{-1} x$	$\bullet \tan ^{-1} x$
$\bullet \sinh x$	$\bullet \cosh x$	$\bullet \tanh x$	$\bullet \sinh ^{-1} x$	$\cdot \cosh ^{-1} x$	$\bullet \tanh ^{-1} x$
$-\sqrt{x}$	$\bullet x^{2}$	$\bullet \log x$	$\bullet \ln x$	$\bullet 10^{x}$	$\bullet e^{x}$
$\bullet x^{-1}$	$\cdot \sqrt[3]{x}$				

Use the RUN／COMP Mode to draw rectangular coordinate graphs．Do not use the BASE or EQUA Mode．When you graph a built－in function，the range parameters are set by the unit automatically．
－To check the current mode

```
|[DisF
```

－To enter the correct mode
（HEMU（COMP）EXE（or［1）

－GRAPH TYPE：REC

- To graph the sine function

EVerdrawing Built-in Function Graphs

You can draw two or more built-in function graphs on the same screen. The range of first graph is set automatically, and the same range is applied for subsequent graphs. The important thing to note in the following example is the use of ㅈTI. By pressing and before国最 to graph the second function, you are telling the unit to leave the previously drawn graphs on the display. If you do not press [A..a], the unit will clear the graphic display automatically and graph only the last function you entered.

- To overdraw graphs

Example To graph $y=\sinh x$ and overdraw it with $y=\cosh x$:

 ?
$\because \because \quad . \quad$, \cdot

Note
You cannot use built-in function graphs in multistatements (page 30) and programming (page 202).

Graphing Manually Entered Functions
You can graph manually entered functions by simply pressing biand and then entering the function. Remember that you also have to specify range parameters (page 137)

- To graph a manually entered function

Example To graph $y=2 x^{2}+3 x-4$ using the following range parameters:

```
Aange
    Xmin:-5.
    max:5.
    scl:2
    Ymin:-ig
    mex:10
    5cl:5.
|N/T /THG
```

```
[smif] [F5)(Cls)[EE
```



```
[4] [x]
```


■Overdrawing Manually Input Graphs

You can draw two or more manually input graphs on the same screen. This makes it possible to find points of intersection and solutions at a glance.
Again note the use of xati before 国 when graphing the second function. If you do not press [x.0], the unit will clear the graphic display automatically and graph only the last function you entered

- You can also input value memory name X by pressing arm.
- To overdraw mantally entered graphs

Example To graph $y=2 x^{2}+3 x-4$ and overdraw it with $y=2 x+3$

Later you will learn how to use the Trace Function (page 170) to find out the values at the points of intersection.

-Specifying the Value Range

When graphing a function with the format " $y=$ function", you can specify the maximum and minimum values to be applied. Use the following format.

Example To graph $y=x^{2}+3 x-5$ for the range $-2 \leqq x \leqq 4$:

Pange
Xmin:-3.
max:5.
scl:7.
Ymin:-10.
max: 30.
Scl:5.
INTT TRG


```
5] Silif] T, [绿[[] [-)
```


7-3 Polar Coordinate Graphs

After you change from the REC Mode to the POL Mode, you can use the unit to draw polar coordinate graphs. When you graph a built-in function, the range parameters are set by the unit automatically. The functions that can be graphed in the POL Mode are those that fit the following format:

$$
r=f(\theta)
$$

Note that you should specify rads as the unit of angular measurement when graphing polar coordinate graphs. When drawing polar coordinate graphs, remember that the unit uses value memories r and $\boldsymbol{\theta}$ to store values. Do not use these memories for storage if you plan to draw polar coordinate graphs.

Graphing Built-In Scientific Functions

Use the RUN/COMP Mode to draw polar coordinate graphs. Do not use the BASE or EQUA Mode. When you graph a built-in function, the range parameters are set by the uni automatically.
The following is a list of the built-in scientific functions that you can graph using polar coordinates.

$\sin \theta$	$\cos \theta$	$\tan \theta$	$\sin ^{-1} \theta$	$\cos ^{-1} \theta$	$\tan ^{-1} \theta$	
$\sinh \theta$	$\cos ^{2} \cosh \theta$	$\tanh \theta$	$\sinh ^{-1} \theta$	$\cosh ^{-1} \theta$	$\tanh ^{-1} \theta$	
$\sqrt{\theta}$	θ^{2}	$\log \theta$	$\ln \theta$	10^{θ}	e^{θ}	θ^{-1}

－To check the current mode

HDisp

－To enter the correct mode sㅐㄱT）（COMP）Exe（or 1 ）

（5HIIT）［RGB（R2）（Rad）ExE

EEXIT

Example 1 To graph tanh θ ：

Example 2
To graph $\ln \theta$ ：

－Graphing Manually Entered Functions

You can graph manually entered functions by simply pressing and then entering the furiction．Manually entered functions must have the following format：

Graph $r=[\theta$ function］

Remember that you also have to specify range parameters（page 137）．

－To graph a manually entered function

Example To graph $r=2 \sin 3 \theta$ using the following range parameters：

$$
\begin{aligned}
& \text { Range } \\
& \text { Xmin:-3. } \\
& \text { max: } 3 \\
& \text { scl:1. } \\
& \text { Ymin:-己. } \\
& \text { max:2. } \\
& \text { scl:1. } \\
& \frac{\text { SC }}{\text { INTT }}
\end{aligned}
$$

Range

T．θ
min： 0 ．
max：π ．
ptoh：$\pi \div 36$

INTT TRG
［5HiTi ［5］（Clis）EXE
Graph 2 sin 3 区AT Ex．

Important

If the difference between the minimum and maximum values you set for the pitch of T or θ is too great，your graph will be too rough．If the difference is too small，drawing of the graph will take a very long time．

©Specifying the Value Range

When graphing a polar coordinate function，you can specify the maximum and minimum values to be applied．Use the following format

Example To graph $r=4 \sin \theta \cos \theta$ for the range $-\pi \leqq \theta \leqq \pi:$

```
[5HIF F5, (Cls) [X]
```



```
AMPM:] [EXE
```


7-4 Parametric Graphs

To draw parametric graphs, first change to the PRM Mode. Do not try to use the BASE or EQUA Mode for graphing.: The functions that can be graphed in the PRM Mode are those that fit the following format:

$$
(X, Y)=(f(T), g(T))
$$

When drawing parametric graphs, remember that the unit uses value memories X, Y and T to store values. Do not use these memories for storage if you plan to draw parametric graphs.

- To check the current mode

[0]isp

- To enter the correct mode

```
[HETM(COMP)國(or: (1)
```


-GRAPH TYPE:PRM

- To graph a parametric equation

Example To graph the following functions:

$$
\begin{aligned}
& x=7 \cos T-2 \cos 3.5 T \\
& y=7 \sin T-2 \sin 3.5 T
\end{aligned}
$$

Use the following range parameters.

Range
$T_{1} \theta$
$\min : 0$.
$\max : 4 \pi$.
ptch $\pi \div 36$

Important

If the difference between the minimum and maximum values you set for the pitch of T or θ is too great, your graph will be too rough. If the difference is too-small, drawing of the graph will take a very long time.

©Specifying the Value Range

When graphing a parametric function, you can specify the maximum and minimum values to be applied. Use the following format.


```
Example To graph the following functions:
\(x=7 \cos T-2 \cos 3.5 T\)
\(y=7 \sin T-2 \sin 3.5 T\)
```

Use the following range:
$\pi \leqq \mathrm{T} \leqq 2 \pi$

7-5 Inequality Graphs

To draw inequality graphs, first change to the INEQ Mode. Do not try to use the BASE or EQUA Mode for graphing. The functions that can be graphed in the INEQ Mode are those that fit one of the following formats:

$$
\begin{array}{ll}
Y>f(x) & Y \geqq f(x) \\
Y<f(x) & Y \leqq f(x)
\end{array}
$$

When drawing inequality graphs, remember that the unit uses value memories X and Y to store values. Do not use these memories for storage if you plan to draw inequality graphs.

Important

Whenever drawing a new inequality graph; you should always start out with (swill Fs (CIs) (国 to clear the display.

- To check the current mode

4 4DITED

- To enter the correct mode

```
MM20](COMP) ExE(or 1])
[5HIT] [Gidi[F4](INQ)
```

EXXII

When you press the Gey in the INEQ Mode, the display shown here appears:
Use the function keys to input the inequality you are graphing.

Function Key	Inputs
F	$Y>$
圂	$Y<$
[5]	$Y \geqq$
[74]	$Y \leqq$

- To graph an inequality

Example To graph $y<x^{2}-2 x-6$ using the following range parameters:

■Overdrawing Inequality Graphs

If you draw two or more inequality function graphs on the same screen, the area containing values that satisfy both functions is filled in.
In the following input sequerice we will input two functions with a single operation. Note the Finfl operation that separates the two functions.

- To overdraw inequality graphs

Example To graph $y>x^{2}-2 x-6$ and overdraw it with $y<-x^{2}+3 x+4$ using the following range parameters:

```
Range
xmin:-6
    max:6
    sc1:1.
Ymin:-i0.
    max:10
    Sc1:5
|NTTTFG
```


ESpecifying the Value Range

When drawing inequality graphs, you can specify the maximum and minimum values to be applied. Use the following format.

($n=1$ to 4)
Example To graph $y \leqq 2 x-5$ using the range $0 \leqq x \leqq 2$, and the following range parameters:

SHIfT [85 (Cls) EX Graph [F4] $(\mathrm{Y} \leq 2]$ [8.0.T
-5] SHiFi
0 Silific 2]

7-6 Integration Graphs

To draw integration graphs, you press [[y]tifar , enter the function, and then press 国: The unit produces the graph on the display with the solution range painted in:

Important

 to clear the display
-Do not try to use the BASE, EQUA, or GRAPH Mode for integration graphing.

- To graph an integral

Example To graph $\int_{-2}^{1}(x+2)(x-1)(x-3) d x$ using the following range parameters:

Range
Xminn $:-4$.
$\max : 4$.
$\max : 4$.
scl:1.
Ymin:-8
max: 1 R
scl:5.
INT: TTAG

Note that you can also include the integral graph operation within programs.

7-7 Probability Distribution Graphs

The unit calculates the three types of probability normal distribution shown below, along with normalized variate $t(x)$. It also produces a probability density function graph (standard normal distribution curve) for the normal distribution.

Once you input a value that represents the normalized variate $t(x)$ for one of the probabilities $P(t), Q(t)$ and $\mathrm{R}(\mathrm{t})$, the unit produces the corresponding standard normal distribution curve. At this time, the probability calculation result appears on the display, with the calculation range highlighted in the graph:-
To draw probability distribution graphs, the unit should be in the SD-Mode and REC Mode. - Note that you do not need to specify range parameters with probability distribution graphs.

- To check the current mode

(GHITISP:

- To enter the correct mode

-GRAPH TYPE:REC

When you press the $\mathrm{FE}(\mathrm{PQR})$ key, the display shown here appears.

EI Ri RI t (

[F1] F2] F3] F4
Use the function keys to input the probability distribution you are graphing.
Fif(P) \qquad Draws standard normal distribution curve and calculates probability $P(t)$ [20) \qquad Draws standard normal distribution curve and calculates probability $Q(t)$ (R) Draws standard normal distribution curve and calculates probability $R(t)$ F4 (t () Calculates normalized variate $t(x)$

- You cannot draw a graph for the normalized variate function $t(x)$.
- To graph a probability distribution

Example To graph P(0.5)

 Graph F6(PQR) F1 (P () 0 [5

*The following shows the parameters that the unit uses for the probability distribution graph.

7-8 Single-Variable Statistical Graphs

To draw single-variable statistical graphs, you must use the SD Mode and the statistical graph DRAW Mode. The unit lets you draw bar graphs, line graphs and normal distribution curves using data you input.

- To check the current mode

- To enter the correct mode

- To draw a bar graph

Example, To draw a bar graph of the following data:

Fank	Value	Frequency
1	0	1
2	10	3
3	-20	2
4	30	2
5	40	3
6	50	5
7	60	6
8	70	8
9	80	15
10	90	9
11	100	2

First, specify the range parameters. Since the maximum data value for x is 100 , we will set X max as 110 . The maximum data value for y is 15, so set Ymax as 20.

Next, specify the number of bars by increasing the number of value memories. Since we have 11 ranks, we should increase the number of memories by 11. If you skip this step, an error occurs when you try to draw the graph.

$\begin{aligned} & \text { Prg: } \\ & \text { F-M } \\ & \text { Grp: } \end{aligned}$	0	Mem:	39
	0	Mat:	0
	0	SD:	\square
		REG:	\square
		Sim:	0
		Pol:	0
$\begin{array}{r} 3912 \\ \sqrt{B T} / C L \end{array}$	By	tes	ee
		DEV E	POP

Now clear the statistical memory: -

Inpul the data. For full details on the techniques you can use to input statistical data, see page 79.

Now draw the graph.

- Find the mode (Mod) on a graph

You-can find the mode-(Mod) on a bar graph using the pointer. Note, however that you can only perform this operation immediately after a bar graph is drawn on the display.

To find the mode immediately after drawing the above bar graph.

-The mode is indicated by the pointer flashing at the highest point on the graph. The values at the bottom of the graph show the data item [X] along with is frequency [I]. - In the case of multimodal distribution, the pointer will be located at the top of the bar that is farthest to the right. In the following graph, bars A, B, and C have the same frequency, so the pointer is located at the top of C because it is farthest to the right.

Use the following procedure when using the STO Mode in the statistical data (STAT DATA) Mode.

- See page 84 for information on determining Med, Max, and Min.
- To superimpose a line graph on a bar graph

While a bar graph is displayed, perform the following key operation.

- To draw a normal distribution curve

Example Using the data input above, with the following range parameters:

$$
\begin{aligned}
& \text { Range } \\
& \text { Xmin } 0 . \\
& \text { max } 10.0 \\
& \text { sciv } \\
& \text { Ymin } \\
& \max 0.05 \\
& \text { scl:D. } \\
& \text { INT TRG }
\end{aligned}
$$

Draw the graph.

Notes
-Be sure to expand the number of value memories to match the number of bars in a bar graph.

- If you change the number of value memories while you are inputting data, you will not be able to draw a graph correctly.
- If you input a value that is outside the minimum and maximum rañges you specify for the range parameters, the data is stored in statistical memory but not in graph memory.
- If you input data that is greater than the maximum you specify for the y-axis, the bar
is drawn to the upper limit of the display, and the points outside the range cannot be connected:-
- The following is the formula the unit uses to draw the normal distribution curve.

$$
y=\frac{1}{\sqrt{2 \pi} x \sigma n} e^{-\frac{(x-\bar{x})^{2}}{2 v \sigma n^{2}}}
$$

- For range parameter settings, Xmin must be less than Xmax
-The message ''done" appears on the display to indicate that drawing of a bar or line graph is complete.

7-9 Paired-Variable Statistical Graphs

To draw paired-variable statistical graphs, you must use the REG Mode and the statistical graph DRAW Mode. The unit draws graphs using data you input.

- To check the current mode

[40isp

- To enter the correct mode
[MENU(REG) EXE (or 4])
SHIFI) [itip (F1 (REC) !
$\Theta \ominus \subset$ F1 (DRW)

-GRAPH TYPE:REC
\mid STAT GRAPH: DRAW \mid -REG MODEL : LIN
ILN LOG EXP PWR
(F1) F2] F3] [F4]

The following are the types of operations that can be selected from the function menu al the bottom of the display．Press the function key below the operation you want to perform． FI（LiN） \qquad Linear regression line drawing（LIN Mode）

国
\qquad Logarithmic regression curve drawing（LOG Mode） （FA）（PWR） \qquad Exponential regression curve drawing（EXP Mode） Power regression curve drawing（PWR Mode）

－To draw a paired－variable graph

Example To draw a graph of the following data：

$x i$	$y i$
-9	-2
-5	-1
-3	2
1	3
4	5
7	8

First，specify the range parameters as shown right．

Now clear the statistical memory．

Input the data．For full details on the techniques you can use to input statistical data，see page 86 ．

EXIT

T－9

Range	
Xmin：－10．	
max ： 10.	
scl：${ }^{\text {che }}$	
Ymin：－5．	
max 15.	
Scl：5．	
INIT TRG	

${ }_{\text {INIT }}$ TRG

Now draw the graph．

Notes

－A point is not plotted if a set of data is outside the range parameter values you specify． －The following key operation causes an error（Ma ERROR）if no paired－variable statisti－ cal data is present in memory．

－For range parameter settings，Xmin must be less than Xmax．

7－10 Storing Functions in Memory

You can store up to 20 functions and expressions in memory for later recall，editing，or graphing．Rectangular coordinate，polar coordinate，and parametric functions，as well as inequalities can all be stored in meimory．Note that the total amount of memory used for storage of functions cannot exceed 127 bytes．

－To Access the Graphic Function Memory

Highlight the GRAPH icon on the Main Menu．

NEFO
 （ \boldsymbol{C} ）(1)

Press ER or to display the GRAPH Mode．

$$
\text { 医国 or } 6
$$

Memory locations－	GRAPH FUNC：RECT Y1：
	YE：
	Y 3 ：
	Y4：
	Y5：
	STO FCL TYF ，gEL DRW

The following are the types ofoperations that can be selected from the function menu ；at the bottom of the display．Press the function key below the operation youi want to perform．
［Fi）（STO）．．．．．．．．．．．．．．．Stores the function into memory
（ F （ RCL ） \qquad Recalls a function from memory
［ Ea （TYP） ．Specifies a type for a stored function
［F4］（，） Inputs a comma between parametric functions
F5（SEL） \qquad Selects whether or not a graph should be drawn
F6（DRW） \qquad Draws a graph for a stored function

$$
-161-
$$

－Function Types

Before storing a function into memory，be sure to first use the following procedure to specify its type（rectangular coordinate，polar coordinate，parametric，inequality）．

－To specify a function type

E3(TYP)
｜$\overline{\text { REC }}$／POL FRM $\mid \mathbb{N Q}$
\square
\square （F3）F
The following are the function types that can be selected from the function menu at the bottom of the display．Press the function key below the type you want to specify．
（FI）（REC） \qquad \therefore Rectangular coordinate
（ $\mathrm{F} 2(\mathrm{POL})$ \qquad Polar coordinate
［FA（INQ）
\qquad Parametric
\qquad Inequality
－To store a rectangular coordinate function
Example To store the following rectangular coordinate graph function in memory location Y2：

$$
y=2 x^{2}-5
$$

First specify the function type as rectangular coordinate．
F3(TYP) F1](REC)

Input the function．
（2）x．0．x^{2} 鳬

The currently specified memory location is highlighted．
\qquad

Store the function into memory．
F6（SET）
－To store a polar coordinate function
Example To store the following polar coordinate graph function in memory loca－ tion r3：

$$
r=5 \sin 3 \theta
$$

First specify the function type as polar coordinate

F3（TYP）F2］（POL）

Input the function

Fi］
（5） \sin x x

$5 \sin 3 \theta$
 STO RCL TYD ，GEL BRW

FI

GRAP＇H FUNC：RECT
$Y 1 \vdots$
$Y Z \vdots$
$Y 3 \vdots$
$Y 4 \vdots$
$Y 5$
$2 X Z-5$
STD

The currently specified memory location is highlighted．

F1（STO）
a memory location where you to store the function．


```
FT:
FUND:POL
53:
r4:
5sin 30
STQ SELECT [*] [\uparrow]/[ET
```

Store the function into memory．
［F6（SET）
F6]

```
GRAPH FUNC:POL
```

GRAPH FUNC:POL
r1:
r1:
YE\#2x2-5
YE\#2x2-5
F3:
F3:
r.4:
r.4:
r5:
r5:
5sin 30
5sin 30
STD SELECT [\downarrow] [t] [SET

```
STD SELECT [\downarrow] [t] [SET
```

F6

```
GRAPH FUNC:POL
r 1:
Y2追こxa-5
r3左5sin 3
r4:
r5:
```

ETO RCL TYP \rightarrow BEL DRW

Move to the memory location where you want to store the function．

$$
-162-
$$

```
GRAPH FUNC:RECT
Y1:
YZ=2X2-5
Y3:
Y4:
Y5:
```

ETO RCL TYF : BEL DAW

- To store parametric functions

Example
To store the following parametric functions in memory location $\mathrm{f4}$:

$$
\begin{aligned}
& x=3 \sin T \\
& y=3 \cos T
\end{aligned}
$$

First specify the function type as parametric.
[F3)(TYP) [$\mathbf{F 3}$ (PRM)
Input the functions.
3 [5in [aTT [F4 ((1)
(3) [005 (8, 제)

The currently specified memory location is : highlighted.

F1(STO)
store the functions.

Store the functions into memory.
F66(SET)

[F]

```
GRAPH:FUNC:PARAM
f1:: %
Y르ᄅᄌᄅ-5
r3=5sin.30
f4:
f5:
3sin T,300s T
STO SELECT [t] [t] SET
```


STO SELECT [4] [\dagger] SET

- To store an inequality

Example To store the following inequality in graphic function memory location Y5:
$y<x^{2}-2 x-6$ $y<x^{2}-2 x-6$
First specify the function type as inequality.
[F3(TYP) [4](NQ)

Input the function. :

The currently specified memory location is highlighted

F1)(STO)
$x^{2}-2 x-6$
STO RCL TYP * BEL DRW
(Fi)

```
GRAPH FUNC:INEQ
M1:
Y2\equiv2xa-5
r3=5sin 30
Xt4=3sin T
Yt4=3005 T
X2-2X-6
STD
[F3 [F4 [F5 [F6
```

The following are the inequality types that can be selected from the function menu at the bottom of the display. Press the function key below the type you want to specify.

$$
\begin{aligned}
& \text { 国 }(Y>) \ldots \ldots, y>f(x) \\
& \text { F4 }(Y<) ~ y<f(x) \\
& \text { F5) }(\mathrm{Y} \geq) \\
& \text {.. } y \geq f(x) \\
& \text { F6 }(Y \leq), \ldots, \ldots, \ldots f(x)
\end{aligned}
$$

Move to the memory location where you want to store the function.


```
GRAPH FUNO: INEQ
Y2#2X2-5
r3=5sin 30
Xt4=3sinT
Yt4=300s T
Y5:
X2-eX-6
STO }Y>\sqrt{}{Y< 
```

[F4]

Store the function into memory.


```
GRAPH FUNC:INEQ
Y2튜X2-5
r3=5sin 30
xt4=3sin T
X,4=3sin T
Y5<XZ-5X-6
STO RCL TYP - SEL DRW
```


■Editing Functions in Memory

Use the following procedures to modity and delete functions that are stored in memory．
－To modify a function in memory
Example To change the function in memory location Y2 $\left(y=2 x^{2}-5\right)$ to $y=2 x^{2}-3$ ：

Recall the function．
［ E 2 （ RCL ）

Scroll down to Y ．${ }^{\text {．}}$

Move the cursor to the location of the change and then input the new value

FI（STO）

$$
\text { FCL SELECT }[t][\uparrow] \mid \text { SET }
$$

F6

```
GRAPH FUNC:RECT
Y1:
Y2#ex2-5
r3=5sin 30
xt4=8sin
Yt4=3cos T.
2\times2-5
STD RCLTYP * EEL DRW
```

```
GRAPH FUNC:RECT
Y1:
Y2Eex2-5
r3=5sin 30
xt4=3sin
Yt4=300s T
2x2-3
STD RCL TYP , EEL DRW
```

[7]

```
GRAPH FUNG:RECT
Y1
Y2##\\-5
r3=5sin 30
Xt4=3s in T
Yt4=300s
2x2-3
STO
SELECT [ [ ] [ +] 要T
```

Store the new function into memory

```
GRAPH FUNS:RECT
Y1:
Y2=2x`-3
「3=5sin 3 
Xt4=3sin T
Yt4=3cos T
STC RCL TYP -, REL ORW
```


－To delete a function from memory

Example To delete the function in memory location Y2：
Display the list of functions in memory．

```
GPAPH FUNO:RECT
Y1
Y2#2X2-B
r3E5sin.3.t
xt4E3sin T
Xt4=3sin T
ISTO FOL TYE ; SEL DRW
```

［F1（STO）

Scroll．down to $Y 2$ ．
Delete thë function located at Y2
（－FGI（SET）

```
GRAPH FUNC:RECT
Y1
YC:
r3囫sin 30
xt4=3sin T
Yt4=3cos T
ETO RCL TYP , SEL EDRW
```


- Drawing Graphs from Memory

You can use either of the two following methods to draw graphs from memory.
-Drawing graphs from specific functions in memory

- Overlaying graphs for all the functions in memory

- To specify the overlaying method

When drawing overlaid graphs, you can sel up the unit to draw them one-by-one or simultaneously. Use the following procedure to specify which method you want to use.

Press (FI)(ON) to specify that graphs should be drawn simultaneously. Press F2(OFF) to specify that graphs should be drawn one-by-one, in graphic function memory location sequence.

EXIIT

- To draw graphs from specific functions in memory

Example 1 To draw a graph of the function in memory location Y2 ($y=2 x^{2}-3$): Use the following range parameters.
 $\sqrt{\text { INTT }}$ TRG

Scroll through the graphs, and cancel those that you do not want drawn. Only the graphs whose equal signs are highlighted will be drawn.

Draw the graph.

```
F6(DRW)
```


- To overlay graphs for all the functions in memory

Example 2
 To overlay graphs for all the functions using the same range parameters

 as in Example 1:$$
\begin{array}{ll}
& \text { F5 }(\mathrm{SEL}) \\
\mathrm{F6}(\mathrm{DRW})
\end{array}
$$

7-11 Other Graph Functions

The functions described in this section can be used with rectangular coordinate, polar coordinate, parametric, inequality, and statistical graphs.

Important

You should enter the COMP, SD, REG, MAT or GRAPH Mode to perform the operations described in this section. Here, we will explain all operations using the COMP Mode only.

- Setting the Type of Graphing Method

There are two types of graphing methods that you can choose between: connection (CON) and plotting (PLOT).
With the connection method, points that are plotted are connected by lines. With the plotting method, only the points are plotted, without connection.

- To specify the drawing method

-DRAW TYPE : CON

Press (FI)(CON) to select connection or (E2)(PLT) to select plotting.
FI(CON)
EXIT

$$
\begin{array}{|cc|}
\hline \text { RUN } \\
\text { G-type } & \text { ROMP } \\
& \text { REC } / \text { CON } \\
\text { Graphing type } \\
\text { CON = connection } \\
\text { PLT = plotting }
\end{array}
$$

-Trace Function

The Trace Function lets you move a pointer along the line in a graph and display coordinate values at any point. The following illustrations show how values are displayed for each type of graph.

- To determine the values of points of intersection

Example To determine the values of the points of intersection for the following equations:

$$
y=x^{2}-3
$$

$$
y=-x+2
$$

Use the following range parameters:

$$
\begin{aligned}
& \text { Range } \\
& \text { Xmin:-5. } \\
& \text {. max: 5. } \\
& \text { scl:1. } \\
& \text { Ymin :- } 1 \square \\
& \text { 林 } x \text { : } 10 . \\
& \text { sci: 2. } \\
& \text { INTT TFG }
\end{aligned}
$$

Draw the graph of the first equation.

(MEW)(COMP) ExE (or 1) [[HIFI STHP (F1 (REC) EXIT
 (5HIIT) 5 (Cls) ExE

Overdraw the graph of the second equation.

Press (F1)(Trace) to activate the Trace Function.
F1 (Trace)

Move the pointer using \odot and Θ. Holding down either key moves the pointer at high speed.
Move the pointer to the first intersection.
When the pointer is at the location you want, press rr6(Coord) to view coordinates individually: Each press of (FG(Coord) changes the coordinate display in the following sequence:

F6)(Coord)
x coordinate onty $-x=-2.765957447$

F6(Coord)

Y coordinate only -

Important

The pointer does not move at fixed intervals. It follows the dots on the display. Because of this, the values provided for coordinates are approximate.

Move the pointer to the next intersection.

You can then use $\sqrt{\text { F }}$ (Coord) to view the x and y coordinate values.

F6)(Coord)

Finally, press (Trace) again to exit the Trace Function.

- To move the trace between two graphs

This operation can be used to trace multiple graphs on the same display. In the COMP; SD, REG, or MAT Mode this operation can be used with up to six graphs that are layered using multi-statements or programming. In the GRAPH: Mode, all graphs that are drawn on the display can be traced.
Example To trace points on the following equations (using a multistatement):

$$
\begin{aligned}
& y=(x+2)(x-3) \\
& y=2 x-3
\end{aligned}
$$

$$
\therefore \quad y=2 x-3
$$

Use the following range parameters:

Execute the multistatement that draws the two graphs.

Graph 2 ($x .0 .1$ - 3 Ex

Press Fan(Trace) to activate the Trace Function. The pointer appears on the graph drawn by the last function in the multistatement. If the unit is in the GRAPH Mode, the pointer appears on the first graph that was drawn.

(Fi)(Trace)

Move the pointer along the line where it is located using (©) and © . Holding down either key moves the pointer at high speed.

Use ($)$ and (∇) to move the pointer between the two graptis.(or $\boldsymbol{\nabla}$)

Note

- If you have more than two graphs shown on the display, the $\dot{\oplus}$ and $\ddot{\sigma}$ cursors can be used to move the pointer from graph to graph.
When you are finished, press: Fil(Trace) again to exit the Trace Function.

- Scrolling Graphs

If the graph you are tracing runs off the display to the left or right, the display scrolls automatically to follow the Trace Function pointer as you trace the graph.

Example

[5Hifi [aRE (FI) (Deg) EXX
Graph \sin Ex

- You cannot scroll polar coordinate or parametric graphs. You also cannot scroll overdrawn graphs that contain polar coordinate or parametric graphs.

Wotes on Using the Trace Function

- You can use the Trace Function immediately after you draw a graph only; If you draw
 or $\mathrm{G}-\mathrm{T}$), the Trace Function will be unavailable.
- The coordinate values at the bottom of the display are shown with a 10 -digit mantissa, i or with a 5 -digit mantissa and 2 -digit exponent. When both the x-coordinate value and the y-coordinate value are shown at the bottom of the display, they appear with an 8 -digit mantissa, or with a 4 -digit mantissa and a 2 -digit exponent. Negative values are one digit shorter because one digit is used for the negative sign.
- You cannot use the Trace Function during program execution
- Once program execution is suspended by a " $\boldsymbol{4}$ " symbol, you can use the Trace Function on an graph produced at that point.
- If you are drawing multiple graphs using multistatements, you can use the Trace Function to trace a graph that is displayed by a display result command (page 30). When you press 国 to resume drawing of the next graph, the Trace Function is automatically cancelled and the pointer disappears from the display.

- Plot Function

The Plot Function makes it possible to plot points anywhere on a graph.
Note that there are two different plot operations: one for graphs in the COMP, SD, REG, 'and MAT Modes, and another for graphs in the GRAPH Modears:

- To plot points in the COMP, SD, REG and MAT Modes

Example
 To plot a point at $x=2, y=2$, with the following range parameters:

Range
 Xmin:-5
 max:5
 scl: 1.
 Ymin:-10
 max:10.
 scl:
 IINIT TRG

Move the pointer using $(\mathbb{Q},(\mathbb{C})$ and $(\boldsymbol{\infty}$. Holding down these keys moves the:pointer at high speed.

F6(Coord)

F6(Coord)
$(\operatorname{BC}(\boldsymbol{A})(4$

When the pointer is at the location you want, press 国 to plot a point.
returns to the original point you specified (2,2 in this example).

ExE

You can change the original point at any time by pressing F3(Plot) and inputting new coordinates.:

```
F3(Plot) 3; [
6] 5 Ex:
```


Note

- In the above example, we specified a starting point of 2, 2. You can also enter the graph display to plot points by simply pressing [a](Plot) followed directly by Ex.

```
Range,
    Xmin:-2
    scl
    Ymin:-̇
    max:10
    scl:2.
    INIT.TTRG
```

(54Hili F3)(Plot) EXE

- If you specify a point that is outside the range set up by the range parameters, the pointer does not appear on the display.
- The x-coordinate value of the current pointer location is stored in the X value memory. The y-coordinate value is stored in the Y value memory.

- To plot points in the GRAPH Mode

:8:

Example
 To plot a point on the graph represented by $y=2 x^{2}-3$, with the follow-

 ing range parameters:First draw the graph for $y=2 x^{2}-3$ using the procedures deseribed on page 168.
F6 (DRW)

Activate the Plot Function, and the pointer appears flashing in the center of the display.

Use the cursor keys to move the pointer around the display.

$$
X=-2 . E-13 \quad Y=-1.4 E-12
$$

$$
\longrightarrow
$$

When the pointer is at the location you want, press 国酭 to plot a point.
You can return the pointer to the center of the display at any time by pressing F3(Plot).
!

Notes

- You can switch the Plot Function off by pressing Fals). When you do, the graph is cleared irom the display and then redrawn, without the points that you plotted.
-Whenever you are using the Plot Function, the location of the pointer is maintained in value memory. The x-coordinate is stored in value memory X, while the y-coordinate is stored in value memory γ.

Line Function

With the Line Function, you can link two points with a straight line.
Note that there are two different line operations: one for graphs in the COMP, SD, REG, and MAT Modes, and another for graphs in the GRAPH Mode.

- To draw a line in the COMP, SD, REG and MAT Modes

Example To draw the graph for $y=3 x$, and then draw a line from the point on the graph where $x=2$ and $y=6$:

Use the following range parameters:

Draw the graph.

```
[5ifi] F5)(CIs) ExE
Gram| [3] [0.7 ExE
```

Use the Plot Function to locate the pointer at $x=2, y=0$.

F3 (Plot) 2 2

Move the pointer up to the graph line.

Draw the line.
F4)(Line) ExE

Now draw another line to the y-axis. Since the x - and y-coordinates of the point you last plotted are stored in X and Y value memories, you can easily move the pointer back to the point on the graph. Note the following operation

Draw the line.
[F4] (Line) Exe

- To draw lines in the GRAPH Mode

Example To draw the graph for $y=2 x^{2}-3$ and then draw a line from the minimum point on the graph to the point where $x=2$ and $y=5$:

Use the following range parameters

First draw the graph for $y=2 x^{2}-3$ using the procedures described on page 168.

Activate the Plot Function, and the pointer appears flashing in the center of the display.

F3(Plot)

Use the cursor keys to move the pointer to the minimum point on the graph, and press 国.

Use the cursor keys to move the pointer to the point where $x=2$ and $y=5$.

Press (404(Line) to connect the two points with a line.
[F4(Line)

Note

You can switch the Line Function off by pressing 国(Cls): When you do, the graph is l cleared from the display and then redrawn, without the lines you drew.

EGraph Scroll Function

Immediately after you have drawn a graph, you can scroll it on the display. Use the cur-sor-keys to scroll the graph left, right, up and down. The display is scrolled in increments of 12 dots, with the display being redrawn after each scroll operation.

- To scroll the graph on the display

Example To draw the graph for $y=0.25(x+2)(2 x+1)(2 x-5), y=2 x-3$, and then scroll it:

Use the following range parameters

```
Range
    xmin:-5.
    max:5:
    sel:1.
    Ymin:-8.
    max:B.
    S01:2.
|NIT TTRG
```


(5) D

(1) $1 \downarrow$

- You cannot scroll bar graphs and line graphs produced using single-variable statistical data.

Zoom Functions

The Enlarge and Reduce Functions let you zoom in and out on graphs.

- To display the Zoom Menu

```
[sHIT) F2] (Zoom)
```


[F] \squareF5)
-The following are the operations that are available from the function display at the bottom of the screen. Press the function key below the operation you want to perform: ET1(BOX) \qquad Box Function
[Fal (FCT) \qquad Displays the factor input screen
(\qquad Zooms in or out on the graph in accordance with the zoom factors
(F4) $\left(\times{ }^{1 / f)}\right.$.............. Zooms in or out on the graph in accordance with the inverse of the zoom factors
F5(ORG) :-......... Restores a graph zoomed using the Box Function or factor zooming to its original size, based on the graph's range parameters

Box Function

The Box Function lets you cut out a specific section of a graph for zooming

- To zoom inion a part of a graph

Example To specify a box on the graph for $y=(x+5)(x+4)(x+3)$, with the following range parameters:

Specify the range parameters.

: ".

$$
\begin{aligned}
& \text { Range } \\
& \text { Xmin:-8 } \\
& \text { max: } 8 \\
& \text { scl:2. } \\
& \text { Ymin:-4. } \\
& \text { max: } 2 . \\
& \text { scl: } 1 \\
& \text { INTT TRG }
\end{aligned}
$$

Draw the graph.

SHifics (Cis) EXE

Press (国 (Zoom) to activate the Zoom Function, and a pointer appears flashing in the center of the display.

Press (E1 (BOX) and move the pointer using the cursor keys.
Once the pointer is located where you want one corner of the box to be, press 国.

F1

- To return a graph to its original size

Example To return to the graph enlarged above to its original size:

F2 (Zoom) F5 (ORG)

- If you locate the second comer of the box horizontally or vertically with the-first comer no box is formed, and so the graph is not enlarged.
- For graphs drawn in the COMP, SD, REG, or MAT Mode, the Box Functión can be used to zoom only the most recently drawn six graphs. In the case of the GRAPH Mode, the Box Function can be used to zoom any graphs. drawn.

■Using the Factor Function to Enlarge and Reduce the Entire
 Graph

You can enlarge or reduce the entire graph. You can set different factors for the x and y-axes, which means that you can' double the length while leaving the height unchanged, or vice versa.
With this function, you can use a pointer that appears on the display to select a point on the graph to be the center of the zoomed area. If you do not specify a point, the center of the normal size graph is used as the center of the enlarged or reduced graph.

- To enlarge a graph

Example To enlarge the graph for $y=\sin x$ by 1.5 times on the x-axis and 2 times on the y-axis, using the following range parameters:

Specify the range parameters.

```
Range
Xmin:-360
    max:360
    scl:180:
Ymin:-1.6
    max:1.6
SC1.0.5
INTT TRG.
```

Note that the box you defined becomes the outline of the display, and the graph is enlarged to fit.
You can repeat the enlarge operation and make entargements of part of an enlarged graph.

Draw the graph

[riret $\sin x .07$ Ex

Press [-2 (Zoom) to display the Zoom Menu'
[F2](Zoom)
;
Press [20(FCT) to display the Factor Input Screen.
[2](FCT)

Input the zoom factors for the x-axis and y-axis.
(1) [7] ExE

Press [F3($\times \mathbf{f}$) to redraw the graphi according to the factors you have specified.
[匀 (\times f)

```
Factor
xfot:
Yfot:
```

$$
\begin{aligned}
& \text { Factor } \\
& \text { xfot } 1.9 \\
& \text { Yfot } 2 .
\end{aligned}
$$

At this time, the range parameters are changed as follows:

…- \because

Fange
Xmin: $=240$
max: 240.
sc1:180
Ymin:- -B
$\max : 0.8$
scl:0. 5
INIT TRG

You can repeat the enlarge operation and enlarge the enlarged graph again.

- To reduce a graph

Example To reduce the graph for $y=\sin x$ by 1.5 times on the x-axis and 2.0 times on the y-axis, using the following range parameters:

Specify the range parameters.

Input the zoom factors for the x axis and y axis．

Press $[44(x / 1)$ to redraw the graph according to the factors you have specified．

At this
as follows：

$$
\begin{aligned}
& \text { Range } \\
& \text { Xmin:-540. } \\
& \text { max:540 } \\
& \text { scl:180. } \\
& \text { Ymin:-3s: } \\
& \text { max:3.-2 } \\
& \text { se } 10.5
\end{aligned}
$$

You can repeat the reduce operation and reduce the reduced graph again．
－To redraw a graph using the inverse of the factors
Continuing from the graph reduction example＇above；press 国（Zoom）and then 因 $(\times 1 / \%)$ ．

$$
\begin{aligned}
& \text { [F4 }\left(\times^{1 / 4}\right)
\end{aligned}
$$

At this time，the range parameters are changed as follows：

Range
Xmin：＝810
$\max : \overline{8} 0$
scl：180．
Ymin：－6． 4
$\max : 6.4$
501：0．5
INiTT TRG
－To specify the center point of an enlarged display
Example To enlarge the graphs：$y=(x+4)(x+1)(x-3)$ ，and $y=3 x+22$ by 5 times on the x－axis and y－axis，with the apparent point of tangency at the center of the display．Use the following range parameters：

$\because \quad \therefore \quad \cdots$

> Range
> Xmin:-8.
> max: 8.
> 561:5.5
> Ymin:-30.
> max: 30 .
> 501:10.
> |INTT |TRG

Draw the graph．
（SnIIT（xall

Graid

Press [F2)(Zoom) to display the Zoom Menu and the pointer appears flashing in the center of the display. Use the cursor keys to move the pointer to the point of tangency.

Press (F2)(FCT) to display the Factor Input Screen.
F2](FCT)

$$
\begin{aligned}
& \text { Factar } \\
& \text { xfot: } \\
& \text { yfat: }
\end{aligned}
$$

$$
\text { Yfot: } \overline{2}
$$

$$
\begin{aligned}
& \text { Factor } \\
& \text { xfct:5 } \\
& \text { Yfot:5 }
\end{aligned}
$$

EXiT]

(F9)
Press [司($\times f$) to redraw the graph according to the factors you have specified.

Note that these graphs are not tangent as they appear on the normal (unenlarged) display.

- To initialize the zoom factors
. F2 (Zoom) F_{2} (FCT) F 1 (INIT)
Anytime you perform the above operation, the unit initializes the zoom factors to the following settings.
i

- To specify the zoom factors within a program

Use the following format to specify the zoom factors in a program.
Factor (Xfct), (Yfct)

Note

- For graphs drawn in the COMP, SD, REG, or MAT Mode, the-Factor Zoom can be used to zoom only the most recently drawn six graphs. In the case of the GRAPH Mode, Factor Zoom can be used to zoom any graphs drawn.

EUsing the Overwrite Function

You can use the following format, specitying your own values for the value memory where indicated, to draw more than one graph on the display at the same time.

Notes

- Only one value for substitution of values can be used in the above format.
- $X, Y, r_{1}^{\prime} \theta$,'and T cannot be specified as the value memory.
-The above format can be used with rectangular coordinate, polar coordinate, and parametric functions, and with inequalities only.

- To overwrite graphs

Example
To draw graphs by substituting the values 3,1 , and -1 for A in the function $y=\mathbf{A} x^{2}-3$. Use the following range parameters::

$$
\begin{aligned}
& \text { Range } \\
& \text { Xmin: } \\
& \text { max } 5 . \\
& \text { scl }: 1 . \\
& \text { Ymin }:-10 . \\
& \text { max }: 10 . \\
& \text { sc } 1: 2 . \\
& \sqrt{\text { INT }} \text { TRG }
\end{aligned}
$$

7-12 Some Graphing Examples

The following examples are presented to show you some ways that the graphing functions can be used effectively.
Note that all of these examples are performed in the COMP Mode.
Example 1
To graph the function $y=x^{3}-9 x^{2}+27 x+50$:
Use the following range parameters.

$\begin{aligned} & \text { Range } \\ & \text { Xmin: }-5 . \\ & \text { max: } 10 . \\ & \text { scil: } \\ & \text { Ymin:-30. } \end{aligned}$

+27 [0.OT +50 [5

Example 2 To graph the function $y=x^{6}+4 x^{5}-54 x^{4}-160 x^{3}+641 x^{2}+828 x-1260$:
Use the following range parameters.

$$
\begin{aligned}
& \begin{array}{l}
\text { Range } \\
\text { Xmin: } 10 . \\
\max : 10 .
\end{array} \\
& \begin{aligned}
\text { Xmin } & -10 \\
\max & 10 .
\end{aligned} \\
& \text { sel: } \\
& \text { Ymin:-8000. } \\
& \text { max: 8000. } \\
& \text { Sc 1:2000. } \\
& \text { INIT TRG }
\end{aligned}
$$ minimum and maximum:

Use the following range parameters.
Range
Xmin:-10
$\max : 10$
scl:2.
Ymin:-B00.
max: 600.
se1:200.
INIT TRG

Use the Trace Function to find the minimum and maximum.

Example 4 To determine the points of tangency for the following functions: $y=x^{3}-3 x^{2}-6 x-16$ $y=3 x-11$

Use the following range parameters.

$$
\begin{array}{|l}
\text { Range } \\
\text { Xmin }-10 . \\
\max : 10 . \\
\text { sci }: 2 . \\
\text { Ymin }: 60 . \\
\max : 40 . \\
\text { scil } 10 . \\
\operatorname{INT} \text { TRG }
\end{array}
$$

Use the Trace Function to find the tangency.

Example 5 To store $x^{3}+1, x^{2}+x$ into Function Memory (page 39), and then graph: $y=x^{3}+x^{2}+x+1$

Use the following range parameters:
Range Xmin:-4.
max:4
scl:1.
Ymin:-10.
max: 10 .
scl: 1
$\sqrt{\mathbb{N} I T} \mid \overline{T R G}$

Programming

8-1 Introduction to Programming
8-2 Deleting Programs
8-3 About Error Messages
8-4 Counting the Number of Bytes
8-5 Program Commands
8-6. Using Jump Commands
8-7 Using Subroutines
8-8 Using Array Memory
8-9 Displaying Text Messages
8-10 Using Matrices in Programs
8-11 Using the Graph Function in Programs

1? $5=0$
3,

Chapter 8 ||| Programming

This chapter tells you how to use the versatile program memory of the unit. Once you program a calculation, you can call it up and execute it using any values you want at the touch of a key.

8-1 Introduction to Programming

The following explains the basics about programming the unit. We also provide a number of actual easy-to-understand examples for your reterence. For full details on each of the programming operations, see the other sections in this chapter.

■To Enter the Programming Mode

Highlight the PRGM icon on the Main Menu.

Press 學 or $[$ to display the Programming (PRGM) Mode.

The above display shows that there are 4,000 bytes of memory available to store programs. Though you can see only four program area names, there are actually a total of 38 , named P 0 through $\mathrm{P9}, \mathrm{PA}$ through PZ, Pr, and $\mathrm{P} \theta$.
The following are the operations that can be selected from the function menu at the bottom of the display. Press the function key below the operation you want to select.

Fin(RUN)
\qquad Program execution
(E^{2} (DEL) Specific program delete
[Ea ($\mathrm{DL} \cdot \mathrm{A}$)
\qquad All program delete

-Specifying the Calcuiation Mode

Before starting a programming operation, you should first specify the calculation mode (CAL MODE) that maiches the calculation you plan to program. The mode you select determines the lype of function key menu that appears on the bottom of the display

- To specify the calculation mode

Perform the following operation while the list of programs is displayed,

The following are the calculation modes that can be selected from the function menu at the bottom of the display. Press the function key below the calculation mode you want to select.
\qquad

```
Computation Mode
```

国(BAS)
\qquad BASE Mode
\qquad Standard Deviation Mod
F4 (REG) \qquad Regression Mode
FG(MAT) Matrix Mode
*Pressing returns to the programming display menu.

-Selecting a Program Area

You can select a program area by moving the cursor to it using the (\triangle) and $(\square$ keys, or by directly inputting the number of letter that names the program area

- To select a program area using the cursor keys

$$
\begin{aligned}
& 4000 \text { Bytes Free } \\
& \mathbb{P D} \text { empty } \\
& \mathbb{P} 7 \text { empty } \\
& \mathbb{P D} \text { empty }
\end{aligned}
$$

- To select a program-area using direct input
4000 Bytes Free
PSE Empty
PR Pempty
P4 empty

■Checking How Much Memory Is Used by．a Program

You can check how much miemory is used by a program either while the list of programs is displayed，or while you are inputting a program．

－Checking memory from the list of programs

1．Use the $(\mathcal{Q}$ ）and Θ keys to move the cursor to the program area whose memory sta－ －tus you want to check．
2．Hold down the ©00 key．The bottom line of the display shows the program area number and the number of bytes it contains．

－Checking memory while programming

Hold down the 四宝 key．The bottom line of the display shows the current－program area number and the number of bytes it contains．

－To Input a Program
Example To program the following formulas，which calculate the surface area（S） and volume（V）of a regular octahedron when the length of one side（A） is known．Store program in area P5．

$$
S=2 \sqrt{3} A^{2} \quad V=\sqrt{2} / 3 A^{3}
$$

$$
\text { (PRIV) (PRG) EXE (or } 8 \text {) }
$$

IMP REP Prg ？

SHIFTOUTI（or EXITIEXIT）

```
?->A: 
```

「2 $\div 3 \times A^{\wedge} 3^{3}$
＂＂？＂is a prompt command for value input．
$\because 4$＇is a display resulticommand．

To Execute a Program Stored in Memory

Example To execute the program stored by the operation described above，for $A=7,10$ and 15

Length of one side	Surface area	Volume
7 cm	$(169.7409791) \mathrm{cm}^{2}$	$(161.6917506) \mathrm{cm}^{3}$
10	(346.4101615)	(471.4045208)
15	(779.4228634)	(1590.990258)

$\boldsymbol{\theta} \boldsymbol{\theta} \boldsymbol{\theta} \boldsymbol{\theta}$
 COMP
3980 Bytes Free
PR empty
P3 empty
P4 empty
$P 5 E P \rightarrow A: 2 \times \sqrt{3} \times A^{-2} 4$

F1（RUN）

7 증（Value of A$)$

EXE

Ex

F6］F2］F3 F4 F5 F6］

（The rest is omilted）
－
Program calculations are executed automatically whenever you press 㸚 after inputing data or after a result is displayed．
＊If calculation is suspended to display a result，press 国 to resume the calculation．
When you execute program；calculations are performed in the mode（COMP，BASE，SD， REG，MAT）that was selected when you input the program．

8－2 Deleting Programs

You can delete either individual programs or all of the programs stored in memory．

Important

The results of the procedures described below cannot be undone．Make sure that you do not need data any more before you delete it．

－To delete a specific program

Display the list of programs and move the pointer next to the program you want to delete． Press（F2）（DEL）．

F2）（DEL）

YES DELETE PROGRAM NO
（F1）
［国
Press Fif（YES）to：delete the program，or（F6）（NO）to abort the operation without deleting anything．
－To delete all programs
Display the list of programs．
Press［ $\mathrm{F3}$（DL•A）
（ $\mathbf{F B}_{3}(\mathrm{DL} \cdot \mathrm{A})$
YES DEL ALL PROGRAMS／NO
［F］
Press（FIMES）to delete all programs，or（FE）（NO）to abort the operation without deleting anything．

8－3 About Error Messages

Sometimes a program you enter causes an error message to appear when you execute it．This means that there is an error that－needs to be corrected．The following shows a typical error message display

All of the possible error messages are listed in the Error Message Table on page 269. When you get an error message，look it up in the Error Message Table and take actions to correct it．

8-4 Counting the Number of Bytes

The memory of this unit can hold up to 4,000 bytes of data. Generally, one function in a program takes up one byte. Some functions, however, require two bytes each.

-1-byte functions

$$
\sin , \cos , \tan , \log _{1}(,), A, B, C, 1,2 \text { etc. }
$$

-2-byte functions

> Lbl 1, Goto 2, Prog 3, etc.

You can count the bytes in a program by pressing the Φ and \varnothing keys. Each press of these keys causes the cursor to jump one byte. Display of the following is counted as two bytes:
$-d / d x($
-Mat, Det, Trm (Mat Mode)

* Row, * How + Row +, Swap (Using matrices in programs)
- Y, r, Xt, Yt, Sim X, Sim Y, Sim Z, Sim Coef, Ply X 1 , Ply X ${ }_{2}$, Ply Coef (VAR Mode)

When the number of bytes remaining drops to five or below, the cursor automatically changes from an underline to " \square ". If you need to input more than five bytes, try to increase the amount of memory available for program storage by deleting unnecessary programs, deleting expanded memory, or by deleting unneeded function memory contents.

- To Check the Amount of Memory Remaining

SHili CapA (Hold Down)
You can also display the remaining memory display by performing the following operation while the COMP, BASE, SD, REG or MAT Modes are displayed.

Wo Check Where the Cursor-Is Currently Located

The above screen remains on the display as long as moisp is depressed:

8-5 Program Commands

The unit'provides you with special programming commands that let you perform conditional and unconditional jümps and loops.

ETo Display the Program Function Menu

[F1 F2] F3 F4 F5 F
The following are the operations that are available from the function display at the bottom of the screen. Press the function key below the operation you want to perform.

-The input in response to a prompt command '?"' can be a value or calculation expres: sion up to:111 bytes long. No non-calculation command or multistatement can be performed while the calculator is waiting for input in response to a prompt command.
-The display result command" " "causes program execution to stop while the calculation result up to the display result command or a text message is displayed. To resume program execution, press 国. The final result of the program execution is displayed regardless of whether or not this command is included at the end. Note, however, that this command should be used at the end of the BASE Mode program in order to return the unit to its original mode following the program.
-The multistatement connector " " $:$ " is used to connect two or more statements together for sequential execution. Unlike statements connected by the display result command, statements connected by the multistatement connector are executed from beginning to end, non-stop. Note that you can also use the Newline Function (described below) to connect statements, and make them easier to read on the display.

About the Newline Function

The Newline Function is a multistatement connector that, performs a newline operation instead of inserting a ":" symbol at the connection of two statements Note the two following displays.

Both displays show the same programs，except that the upper one uses multistatements commands，while the lower one uses the Newline Function．Note how much easier the lower display is to read．
－To use the Newline Function
To perform a newline operation at the end of a statement，press 压国．

－To Display the Jump Command Menu

［5HIF）PREM（JMP）
［Gto Lbl Dez Isz
［F1［F2］［F3］F4］
The following are the operations that are available from the function display at the bottom of the screen．Press the function key below the operation you want to perform．
［FI）\Rightarrow ） \qquad ．Indicates conditional jump destination
［2］（Gto） \qquad Indicates unconditional jump destination
国（Lb）
\qquad Indicates label
F4（Dsz） \qquad Decrements value memory Fsf（ Isz ） \qquad Increments value memory

To display the Relational Operator Menu

```
[5HIT] [R[G:F2(REL)
```


To display the Punctuation Symbol Menu

［4IPHE

－－

The following are the operations that are available from the function display at the bottom of the screen．Press the function key below the operation you want to perform．

－The single quotation mark indicates the beginning of non－executable remarks．It is use－ ful to insert a program name at the beginning of the program for display in the program area list（only the first 13 characters are displayed）．The unit considers anything from a single quotation mark up to the next multistatement connector（：），display result com－ mand (\mathcal{S}) ，or newline operation to be part of the remarks．Remarks can contain letters or numbers．
－Double quotation marks indicate text to be shown on the display．Display text can con－ tain letters or numbers．The unit considers anything from a double quotation mark up
to the next multistatement connector（ $:$ ），display result command（ \boldsymbol{A} ），or newline opera－ tion to be part of the display text．Display text can contain letters or numbers．
－The＂－＂symbol is used to indicate a range of value memories．For example，to assign a value of 10 to value memories A through F ，you would specify the following：

This symbol cannot be used to assign values to value memories r or θ ，but it can be used with array memories（page 214）．It is most useful when you want to clear aseries of value memories by assigning them with a value of zero in a program．

8－6 Using Jump Commands

Generally，programs are executed from beginning to end，in the order that they are input into memory．This can cause problems when you want to repeat an operation a number of times or when you want to execute a formula in a different location．Jump commands make it possible to accomplish such operations very easily．

■ About Unconditional Jumps

An unconditional jump is one that is performed no matter what circumstances exist．To use an unconditional jump with the unit，you first identify the destination of the jump with a label．Then you tell the unit at some point to go to the label and continue execution of the program．
To illustrate，we will reprogram the calculation for the surface area and volume of a regular octahedron that we originally wrote on page 202．With our previous program，we had to start the program three different times to perform our calculations．With an unconditional jump however，once we start program execution，it repeats until we tell it to stop．

－To use an unconditional jump

Example 1

Previous Program

$?, \rightarrow, A,: 2 ; x, \sqrt{ }, 3, x, A, x^{2}$,

A，$\sqrt{-}, 2, \div, 3, \div \times, A, \wedge, 3$
20 bytes

New Program

Lbl， $1,:, ?, \rightarrow, A, i, 2, x, \sqrt{ }, 3$ $x, A, x^{2}, 4, \sqrt{ }, 2, \div, 3, x, A, \wedge$ ，
3，4，Goto， 1
26 bytes

Note that in the new program，we identify the start of the program with label 1 （Lbl 1 ） This is where we want to jump to each time．Then at the end of the program we include the jump command to＂go to label 1＂（Goto 1）．
Input the program（using the procedures described on page 202），and you should be able to perform the following calculation．

F1］（RUN）	？
	二169．7409791
Exe	161．6917506
Exe	$?$
100 球	346．4101615
Ex．	471.4045208

> (The rest is omitted)

In the above example we located the destination of the branch at the beginning of the program．Actually，you can locate destinations anywhere．Note the next example．
Example 2 To program the formula $y=A x+B$ ，so that for each execution the values of A and B remain constant；but the value of x varies．

Program

$?, \rightarrow, A,:, ?, \rightarrow, B,:$, LbI， $1,:, ?, . \rightarrow, X,:, A, X, X,+, B, 4$, Goto， $1 \quad 23$ bytes
With this program，a prompt appears once for A and B．A prompt for X appears with each execution；of the loop back to label 1 （Lbl 1）：

Note ：
＂If your program tells the calculator to go to a label that does not exist，an errormessage （Go ERROR）appears on the display．

About Conditional Jumps

With a conditional jump you set up certain criteria and control whether or not the jump is actually performed．Look at the following format

Left side

As shown above，if the condition defined by the relational operator is true，the statement following＂\Rightarrow＂is executed，and then the next statement is executed．If the condition is false，the statement following＂\Rightarrow＂is skipped．
The following are the conditions that you can define using the relational operators．
$L=R$ \qquad True when L änd R are equal；false when L and R are not equal
LキR \qquad True when L and R are not equal；false when L and R are equal
$L>R$ \qquad True when L is greater than R ；false when L is less than or equal to R
＜ R
．True when L is less than R ；false when L is greater than or equal to R
$L \geq R$
\qquad True wen Lis greater than or，equal to R ；false when L is less than R
$L \leq R$ \qquad True when L is less than or equal to R ；false when L is greater than R
－To use a conditional jump

Example 1
To write a program that calculates the square root of any input value that is greater than or equal to zero：If a value that is less that zero is input，the program ignores it and prompts further input．

Program

Lbl， $1, \therefore ?, \rightarrow, \dot{A}, \therefore, A, \geq, 0, \sqrt{2}, A$, Goto， 16 bytes
This program starts out by prompting input for A ．The next statement tests the input by saying：＂if the value of A is greater than or equal to＇0，then calculate the square root of $A^{\prime \prime}$ ．This is followed by a display result command．After the result is displayed，pressing国 continues with the Goto 1 unconditional jump tolabel 1 （Lbl 1）at the beginning of the program．For values that are less than 0 ，the squaie root calculation statement is skipped and execution jumps directly to the Goto 1 statement．

ごロ名

Example 2．To write a program that accumulates input values，but displays the total

Program

$0, \dot{\rightarrow}, \mathrm{~B},:$
Lbl， $1, \therefore, ?, \rightarrow, A,: A,=, 0, \Rightarrow$ ，Goto， $2_{1}:$ ，
A，$+, B, \rightarrow, B,:$, Goto，1，：，
Lb，2，$\because, \mathrm{B} \quad \therefore 31$ bytes
With this program， 0 is assigned to value memory B to clear it．The next statement prompts for input of a value to value memory A ．The next statement is a conditional jump that says： ＂if the value input for A equals 0 ，then go to label 2 ＂．The statement following label 2 （Lbl 2）ends program execution with a display of the value memory B contents．For other values，the next statement adds value memories A and B ，and then stores the result in value memory B again．After this，program execution returns to the statement following label 1 （Lbl 1），where the next input for A is prompted．

EAbout Count Jumps

There are two count jumps: one that increments-a value memory (Isz) and one that decrements a value memory (Dsz). Look at the following format

Isz

As shown above; if the increment or decrement operation does not cause the content of the value memory to become 0 , the statement following the value memory name is executed. If the content of the value memory becomes 0 , the next statement is skipped.

- To use a count jump

Example 1. To write a program that accepts input of 10 values, and then calculates the average of the values.

Program

$1,0, \rightarrow, A_{1}: 0, \rightarrow, C,:$
$\mathrm{Lb}, 1 ;: \mathrm{P}, \rightarrow \mathrm{B},: \mathrm{B},+, \mathrm{C}, \rightarrow, \mathrm{C},:$
Dsz, A, - , Goto, $1,1, C, \div 1,0$

32 bytes号

ry
ir.. :
This program starts out by assigning: value of 10 to A. This is because value memory A will be used as a control variable: The next statement clears C to zero. After defining the location of label 1 (Lbl 1), the program then prompts for input of a value for B. The next statement adds the value of B to value memory C, and then stores the result in C. The next' three statements say: "decrement the value in A, and if it is still greater than 0 , jump back to label 1 ; otherwise divide the contents of C by $10^{\prime \prime}$.

Example 2 To write a program that calculates at 1 -second intervals the altitude

 of a ball thrown into the air at an initial velocity of $\mathrm{Vm} / \mathrm{sec}$ and an angle of S°. The formula is expressed as: $\mathrm{h}=\mathrm{V}$-sinSt $-\frac{1}{2} \mathrm{gt}^{2}$, with $g=9.8$. The effects of air resistance should be disregarded.
Program

```
Deg, D, ->, T, ?, 访:?,#,S,: 
    Deg,:, , ->, T, , , , , v,: 
    9, & 8, X,T, X2, -, 2, 4,Goto, }
```

With this program, the first statements specify the unit of angular measurement and clear T to 0 . Then the initial velocity is prompted for V and the angle is prompted for S . Lbl 1 identifies the beginning of the repeat calculation.
The value stored in T is incremented by Isz T, and in this program the Isz command is used only for incrementation, without any comparison or decision being performed. Each time T is incremented, the formula is calculated and the altitude is displayed.

8-7 Using Subroutines

Up to this point, all of the programs we have seen were contained in a single program area. You can also jump between program areas, so that the resulting execution is made up of pieces in different areas. In such a case, the central program from which other areas are jumped to is called a "main routine". The areas jumped to from the main routine are called "subroutines".

 by the name of the program area you want to jump to (0 to $9, A$ to Z, r, θ).

Example Prog 0 - Jumps to program area 0

Prog T - Jumps to program area T
Atter the jump to the program area you specify, execution continues from the beginning of the subroutine stored in the specified program area. When end of the subroutine is reached, execution returns to the statement following the Prog command that initiated the subroutine.
You can jump from one subroutine to another, a procedure that is called "nesting". You can nest up to a maximum of 10 levels, and an error will occur (Ne ERROR) if you try to nest an 11th time. If you try to jump to a program area that does not contain a program, an error message (Go ERROR) will appear on the display.

Important

- The Goto command does not jump between program areas. A Goto command jumps to the label (Lbl) located inside the same program area.

ESubroutines Save Memory

Note the following two programs.

```
PO Fix, \(3, \ldots, ? \rightarrow, A,:, 2, x, \sqrt{ }, 3, x, A, x^{2}, 4\),
    \(\sqrt{ }, 2, \div, 3, x, A, \hat{}, 3 \quad \because \quad \because 23\) bytes
P1 Fix, \(3,2, ?, A,:, \sqrt{2}, x, A, x^{2}\),
    \(\sqrt{ }, 2, \div, 1,2, x, A, \wedge, 3\)
22 bytes
```

If we input these two programs separately, they require a total of 45 bytes. But note that the underlined portions of these two programs are identical. This means that these parts can be stored as subroutines and called by both of the programs.
If we use subroutines, we get the following results.

Subroutines

$$
\begin{aligned}
& \text { P9 Fix, } 3,2, ?, A_{i}, \sqrt{ }, 3, \times, A, x^{2}, \\
& \text { P8 } \sqrt{ }, 2, \div, 3, x, A, A, 3
\end{aligned}
$$

Main routines

```
P0 Prog, 9, :, Ans, \times, 2, 4, Prog, 8 . 9 bytes
P1 Prog, 9, 4, Prog, 8, :, Ans, }\div,
9 bytes
```

As you can see, the number of bytes required to store the two programs and the subroutines is 38 , for a saving of 7 bytes.
When you execute the program in program area 0 , it immediately jumps to Pg and executes the contents of that program area. At the end of $\mathrm{P9}$, execution returns to PO where the result produced by the subroutine in P 9 is multiplied by 2 and then displayed. After you press the 国 key, execution jumps to P 8 , where the remainder of the program is executed.
With the main routine in program area $P 1$, execution jumps immediately from program area P9. At the end of P 9 execution returns to P 1 where the $\mathrm{P9}$ result is displayed. When you press 国, execution jumps again to PB . At the end of P , execution returns to $\mathrm{P}:$, where the result produced by $P 8$ is divided by 4 and displayed.

8-8 Using Array Memory

In addition to the individual value memories, the unit gives you array memory capabili:ties. Note the following.

Value Memories	Array Memories
A	A $[0]$
B $[-2]$	
C	$A[1]$
C $[-1]$	
D	$A[2]$
E $[0]$	
	$A[3]$
$C[1]$	
	$A[4]$
$C[2]$	

Note
*You cannot use r or θ value memory as array memory.

As you can see, array memory names consist of an alphabetic charracter, followed by a subscript enclosed in brackets. The subscript is a value, either positive or negative, or a value memory that represents a value. If the value of 5 is assigned to value memory X, tor example, the array memory $\mathrm{A}[\mathrm{X}]$ would be equivalent to $\mathrm{A}[5]$.

- Array Memories Simplify Programming

Since the subscript of an array memory can be a value, memory name, programming becomes more economical: Note the following

Example To write a program that assigns the values from 1 through 10 to memories A through J

Using value memories

$$
\begin{aligned}
& 1, \rightarrow, A,: 2, \rightarrow, B,:, 3 \rightarrow C, \because, 4, \rightarrow, D,:, \\
& 5, \rightarrow, E,: 6, \rightarrow, F,:, 7, \rightarrow, G,:, 8, \rightarrow, H,:
\end{aligned}
$$

$$
9, \rightarrow, I,:, 1, \theta_{1} \rightarrow, J \quad 40 \text { bytes }
$$

Using array memorie's

$$
\begin{aligned}
& 0, \rightarrow, Z,:, L b l, 1,:, Z,+, 1, \rightarrow, A,[, Z,],: \\
& \text { lsz, } Z, \therefore, Z,<, 1,0, \Rightarrow \text {, Goto, } 1
\end{aligned}
$$

As you can see, using array memories uses 14 fewer bytes. You get even more economy with the following program.

Example To write a program that displays the contents of a memory specified by
input input
Using value memories
Lbl, $1,:, ?, \rightarrow, Z_{1}$
$Z,=1, \Rightarrow A_{i}, Z_{i}=, 2 ; \Rightarrow, B$,
$Z,=, 3 ; \Rightarrow, C, A_{1}, Z, 4 \Rightarrow, D, 4$,
$Z,=, 5, E_{,}, Z,=, 6, \Rightarrow, F, 4$,
$\mathrm{Z},=, 7, \Rightarrow, \mathrm{G}, 4, \mathrm{Z},=, 8, \Rightarrow, \mathrm{H}_{1}$,
$Z_{1}=, 9, \Rightarrow, 1_{1}, Z_{1}=1,0, \Rightarrow, J, \boldsymbol{d}$
Goto, 1
70 bytes
Using array memories
Lbl, 1, :, ?, $\rightarrow, \mathrm{Z},:, \mathrm{A},[, Z,-, 1], 4,$,
Goto, 1
16 bytes
With value memories, logical operations are used to test the input until the proper memory is found. With array memories, on the other hand, the specified memory is found immediately.

nCautions When Using Array Memories

You should remember that array memories are actually based on value memories: Note the following relationship.

Value memory

$\mathrm{B}[-1] \cdot \mathrm{B}[0] \mathrm{B}[1] \mathrm{B}[2] \mathrm{B}[3] \mathrm{B}[4] \cdot \mathrm{B}[5]$
$\mathrm{C}[-2] \mathrm{C}[-1 ; \mathrm{C}[0] \mathrm{C}[1] \mathrm{C}[2] \mathrm{C}[3] \mathrm{C}[4]$
$\mathrm{Gl}[-6] \mathrm{G}[5] \mathrm{G}[-4] \mathrm{G}[-3] \mathrm{Gl}[-2] \mathrm{G}[-1] \mathrm{G}[0]$

Array Memory

$\begin{array}{llll}\mathrm{A}[23] & \mathrm{A}[24] & \mathrm{A}[25] & \mathrm{A}[26] \\ \mathrm{A}[27] \\ \mathrm{B}[22] & \mathrm{B}[23] & \mathrm{B}[24] & \mathrm{B}[25] \\ \mathrm{B}[26]\end{array}$ $\begin{array}{llll}\mathrm{B}[22] & \mathrm{B}[23] & \mathrm{B}[24] & \mathrm{B}[25] \\ \mathrm{C}[21] & \mathrm{B}[26] \\ \mathrm{C}[23] & \mathrm{C}[24] & \mathrm{C}[25]\end{array}$
$\mathrm{G}[17] \mathrm{G}[18] \mathrm{G}[19] \mathrm{G}[20] \mathrm{G}[21]$
$X[0] X[1] X[2] X[3] X[4]$
$Y[-1]$ Y[0] Y[1] Y[2]Y(3)
$Z[-2] Z[-1] Z[0] Z[1] Z[2]$

This means that you must be careful when using array memories that you do not overlap.

Sample Programs That Use Array Memory

The following programs store x and y data in array memories. Whenever an x value is input, the corresponding y value is displayed. You can input a total of 15 sets of data.
\qquad With this version of the program, value memory A is used as a data control memory, while memory B is used for temporary storage of x data. The x data is stored in memories C[1] (value memory D) through C[15] (value memory R), while the y data is stored in memories C[16] (value memory $\$$) through $\mathrm{C}[30]$ (value memory $\mathrm{Z}[7]$).
$1_{1} \rightarrow, A_{1}:$ Defm, $7,:$,
Lbl, 1, :, ?, \rightarrow, C, $1, \mathrm{~A}, \mathrm{l},:$,
?, $\rightarrow, C,\left[, A_{1}+, 1,5,\right]::$
Isz, $A,: A,=1,6, \Rightarrow$, Goto, $2,:$, Goto, $1,:$,
$\mathrm{Lbl}, 2,:, 1,5, \rightarrow, A,:, ?, \rightarrow, B,:$,
$\mathrm{B},=, 0, \Rightarrow$, Goto, $5 ;$
Lbl, $3, \mathrm{~B},=, \mathrm{C}, \mathrm{I}, \mathrm{A}, \mathrm{l}, \Rightarrow$, Goto, $4,:$,
Dsz, A, :, Goto, 3, :, Goto, 2,:,
Lbl, 4, : C, $[, A,+, 1,5], 4,$, Goto, $2,:$,
Lbl, 5
98 bytes

The above program uses value memories as follows:
x data

$C[1]$	$C[2]$	$C[3]$	$C[4]$	$C[5]$	$C[6]$	$C[7]$	$C[8]$	$C[9]$	$C[10]$
D	E	F	G	H	1	$]$	K	L	M
$C[11]$	$C[12]$	$C[13]$	$C[14]$	$C[15]$					
N	O	P	Q	R					

y data

$$
\begin{array}{cccccccccc}
C[16] & C[17] & C[18] & C[19] & C[20] & C[21] & C[22] & C[23] & C[24] & C[25] \\
S & T & \cup & V & W & X & Y & Z & Z(1) & Z(2) \\
C[26) & C[27] & C[28] & C[29] & C[30] & & & & & \\
Z(3) & Z(4) & Z(5) & Z(6) & Z(7) & & & &
\end{array}
$$

Example 2
This version is identical to Example 1, except that a different letter is used for the x and y data names.

1. \rightarrow, A, :, Defm, 7, :,

Lbl, $1,:, ?, \rightarrow, C,[, A],, \vdots$,
$?, \rightarrow, R_{1}\left[, A_{1}\right],:$,
Isz, $A_{1}: A,=, 1,6, \Rightarrow$, Goto, 2, :, Goto, $1,:$,
Lbl, 2, :, 1, 5, \rightarrow, A, :, ?, \rightarrow, B, :,
$\mathrm{B},=0, \Rightarrow$, Goto, $5,:$,
Lbl, $3, \therefore, B,=, C,[, A],, \Rightarrow$, Goto, $4,:$
Dsz, A_{1} :, Goto, 3, $:$, Goto, 2, :,
Lbl, 4, :, R, [, A,], A, Goto, 2, :
Lbl, 5
92 bytes
This above program uses value memories as follows:
x data

$C[1]$	$C[2]$	$C[3]$	$C[4]$	$C[5]$	$C[8]$	$C[7]$	$C[8]$	$C[9]$	$C[10]$
D	E	F	G	H	$I:$	\ddots	K	L	M
$C[11]$	$C[12]$	$C[13]$	$C[14]$	$C[15]$					
N	O	P	Q	R					

y data
$\begin{array}{cccccccccc}R[1] & R[2] & R[3] & R[4] & R[5] & R[6] & R[7] & R[8] & R[9] & R[10] \\ S & T & U & V & W & X & Y & Z & Z(1) & Z(2)\end{array}$

- R[11] R[12] R[13]-R[14] R[15]

$$
Z(3) \quad Z(4) \ldots Z(5) \quad Z(6): Z(7)
$$

-

Note-that in the above two programs the Defm command was necessary to increase the number of value memories.

8－9 Displaying Text Messages

Text，numbers，and symbols can be displayed by programs as messages that prompt input，etc．Note the following example．
Statement
Display
Without text ？$\rightarrow X$
？
With text＂$X=$＂？$\rightarrow X$
$X=$ ？

As you can see，the text prompt makes it much easier to understand what input is required by the program．

Messages can also be used to explain the meaning of a displayed result．

```
Example
    Lbl, 0, :, '", N, =, '", ?, \(\rightarrow, \mathrm{B}, \sim, \mathrm{C}_{;}^{\prime} ;\)
    \(0, \rightarrow, A,:\),
    Lbl, \(1,:, \mathrm{C}_{4} \div, 2, \rightarrow, \mathrm{C},:\) Frac, \(\mathrm{C}, \neq, 0, \Rightarrow\), Goto, \(3,:\)
    lsz, \(A,:, C,=, 1, \Rightarrow\), Goto, \(2,:\), Goto, \(1,:\),
    Lbl, 2, :, ", X \(\mathrm{X}_{1}=\),", 4, A, 4, Goto, 0, :,
    Lbl, \(3_{2}:, ", N, O, \cdots, 4\), Goto, 0
```

 70 bytes
 This program prompts for input of a value．If the input value is equivalent to 2^{x} ，it dis－ plays the value of x ．If the input value is not equivalent to 2^{x} ，it displays the message ＂NO＂．

Important

Be sure to follow the message with a display result command if there is another state－ ment following the message．
Assuming that the program is stored in P 2 ：
 ［这相

Text that is longer than 16 characters is displayed in two lines：When text is at the bottom of the display，the entire screen scrolls upwards．

ABCDEFGHIUKLMNOP
＊After a while

ABCDEFGHIJKLMNOP QRSTUVWXYZ

8－10 Using Matrices in Programs

You can use matrix row operations（page 104）in programs to swap rows，calculate scalar products，add scalar products to：other rows，and add two rows．
－To swap two rows
Example To swap rows two and three in the following matrix（Matrix A）．
$\left(\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right)$
Swap，A，＇，2，, 3

Swap A, ᄅ, 3_

- To calculate a scalar product for a row
\qquad To calculate a scalar product of row 2 of the following matrix (Matrix A) by multiplying each element by 4.
$\left(\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right)$
*Row, 4, ', A, ', 2
7 bytes

[EXTI] EXTIT Fi (RUN)
F4 (LIST)1)(EDIT)

- To add the scalar product of one row to another row

To calculate a scalar product of row 2 of the following matrix (Matrix A), by multiplying each element by 4 , and then add the resuits to row 3 .

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right)
$$

* Row + , 4, , A, , 2, ', $3 \quad 9$ bytes
*Row+ 4, A, 2, 3_

Exil [iv (RUN)
[F4](LIST)
[FI(EDIT)

- To add one row to another

Example To add row 2 to row 3 in the following matrix (Matrix A), and store the result in row 3.

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right)
$$

Row + , A, , 2, י, $3 \quad 9$ bytes

Row+ A, 2,3.

R.OF ROW COL

8-11 Using the Graph Function in Programs

By using the graph function in programs, you can graphically represent long, complex equations and overdraw graphs a number of times. All graph commands (except the Trace Function) can be used in programs. You can also specify range parameters in programs.

Example
To graphically represent the number of solutions (real roots) that satisfy both of the following equations

$$
\begin{aligned}
& y=x^{4}-x^{3}-24 x^{2}+4 x+80 \\
& y=10 x-30
\end{aligned}
$$

Use the foltowing range parameters.

$$
\begin{aligned}
& X \min :-10 \\
& \max : 10 \\
& \mathrm{scl}: 2 \\
& Y \min :-120 \\
& \max : 150 \\
& \mathrm{scl}: 50
\end{aligned}
$$

First, program the range parameters. Note that parameters are separated by commas.

Range, (-), $1,0,1,1,0,1,2,:(-), 1,2,0,1,1,5,0,1,5,0$
Next, program the equation for the first graph. Press 䑁都 the end.
Graph, $X,{ }^{\wedge}, 4,-, X^{\wedge}, 3,-, 2,4, X, x^{2},+, 4, X,+, 8$,

$$
-221-
$$

Finally，program the equation for the second graph．

$$
\begin{aligned}
& \text { Range -10.10.2, - } \\
& \text { 12ロ, 15ロ, 5ロ+ } \\
& \text { Graph } Y=X^{\wedge} \triangle-X^{\wedge} 3- \\
& 24 X^{2}+4 X+804 \\
& \text { Graph } Y=10 X-30
\end{aligned}
$$

The above program should produce this graph when you execute it．

EXIT FI（RUN）

You could use a display result command（1）in place of the 国追 operation at the end of the first equation．This will cause execution to stop after the first graph is drawn．To resume execution，press 툴：－

Data Communications

9－1 Connecting Two fx－7700GE Units
9－2 Connecting the fx－7700GE with a Personal Computer
9－3 Before Starting Data Communications
9－4 Setting Communications Parameters
9－5 Using ALL to Send All Data
9－6 Using PROGRAM to Send Program Data
9－7 Using FUNCTION MEM to Send Function Memory Data
9－8 Using MATRIX to Send Matrix Memory Data
9－9 Using STATISTICS to Send Statistical Memory Data
9－10 Using VARIABLE MEM to Send Value Memory Data
9－11 Using RANGE to Send Graph．Range Parameters
9－12 Using FACTOR to Send Graph Range Parameters
9－13 Using GRAPH FUNCTION to Send Graph Function Memory．Data
9－14 Using EQUATION to Send Equation Data
9－15 Using BACK UP to Send All Mode Settings and Memory Data
9－16 Screen Copy Function
9－17 Data Communications Precautions

Chapter 9

Data Communications

This chapter tells you everything you need to know to transfer programs between the fx-7700GE and another CASIO Power Graphic unit (fx-7700GE, fx-7700GB, fx-8700GB), connected with an optionally available SB-62 cable. To transfer data between an fx-7700GE unit and a personal computer, you will need to purchase the separately available CASIO FA-121 Ver. 2.0 Interiace Unit

General Procedure

The following is the general procedure to follow when performing data communications. Details of each procedures are presented in the following sections of this chapter.
-Though you can transfer data between the fx-7700GE and another $\mathrm{fx}-7700 \mathrm{GE}$, an $f x-7700 \mathrm{~GB}$ or an fx -8700GB, all of the examples in this manual cover data transfer with another fx -7700GE only.

1. Connect the two units.
2. Set up the two units with the same parameters.
3. Set up one unit to send, and the other unit to receive
4. On the receive unit, specify the data to be received and put the unit intoreceive standby 5. On the send unit, specify the data to be sent and start the send operation.

9-1 Connecting Two fx-7700GE Units

The following procedure describes how to connect two Power Graphic units with an optional SB-62 connecting cable for transfer of programs between them.

ETo Connect Two fx-7700GE Units

1. Check to make sure that the power of both fx -7700GE units is off.
2. Remove the covers from the connectors of the two Power Graphic units. - Be sure you keep the connector covers in a safe place so you can replace them after you finish your program communications.
3. Connect the two units using the SB-62 cable.

Important

- Keep the connectors of the fx-7700GE covered when you are not using them.

9-2 Connecting the fx-7700GE with a Personal Computer

To transfer data between the fx-7700GE and a personal computer, you must connect them through a separately available CASIO FA-121 Ver. 2.0 Interface Unit.

For details on operation, the types of computer that can be connected, and handware limitations, see the user's manual that comes with the FA-121 Ver. 2.0 .

■To Connect the fx-7700GE with a Personal Computer

1. Check to make sure that the power of the Power Graphic and the personal computer is oft
2. Connect the personal computer to the FA-12t Ver. 2.0 Interface Unit
3. Remove the cover from the connector of the fx-7700GE.

- Be sure you keep the connector cover in a safe place so you can replace it after you finish your program comimunications.

4. Connect the fx -7700GE to the FA-121 Ver. 2.0 Interface Unit.
5. Switch on the power of the fx -7700GE, followed by the personal computer. -After you finish program communications, switch off power. in the sequence: fx-7700GE first, and then the personal computer. Finally, disconnect the equipment.

9-3 Before Starting Data Communications

Before actually starting data communications, you should first enter the LINK Mode from the Main Menu:

■To Enter the LINK Mode

Highlight the LiNK icion on the Main Menu.

Press 圂 or to display the LINK Mode.

COMMUN I CAT I ON	
PARITY: EVEN	
F1:TRANSMIT	
F2: RECEIVE	
FB:PARAMETERS	
TRN RCV	FRM
[F] [F2	F6)

The following. are the operations that can be selected from the function menu at the bottom of the display. Press the function key below the operation you want to perform.
FITRN) \qquad Transmit
E2(RCV) \qquad Receive
F6(PRM) Parameter settings

-About the Data Type Selection Screen

Whenever you press F1(TRN) to send data or (F2)(RCV) to receive data, a data type selection screen appears on the display.

The following table describes what each of these items means. You will learn later hoy to make a selection using these screens. . . .

Selection	
ALL	All data from PROGRAM to EOUATION
Program	Program data
Function Mem	Function memory contents
Matrix	Matrix memory contents
Statistics	Single-variable and paired-variable statistical data
Variable Mem	Value memory and extended memory contents
Fange	Graph range parameters :
Factor	Factorfunction zoom ratios
Graph Function	Graph functions
Equation	Equation coefficients
Back Up	All memory contents

Note

- If the selections you make on the send unit and receive unit do not match; a TRANSMIT ERROR will be generated on the sender and a RECEIVE ERROR will be generated on the receiver.

9-4 Setting Communications Parameters

Before you can perform data communications; you must first set up certain hardware parameters to make sure that the two units are able to understand each other. The parameters of the sender and the receiver must be identical for them to be able to communicate correctly. There are two hardware parameters that you can set.

Parameter	Settings
Parity	EVEN ODD NONE
Speed (BPS)	12 (1200)
	24 (2400)
	48 (4800)
	96 (9600)

-To Set fx-7700GE Parameters
Starting from the LINK Mode:

*The parameters that are currently set are highlighted on the display.

The pointer indicate which parameter you can change. Use Θ and Θ to move the highlighting and change the parameter where the pointer is located.

Use (4 and (\odot) to move the pointer up and down.
After the parameters are highlighted the way you want, press 国 to store them.

-To abort the parameter setting procedure and return the settings to what they were before you changed them, press AC before pressing 国 to strore the parameters.

9-5 Using ALL to Send All Data

The following procedures show how to send all data, from Program to Equation from one fx-7700GE unit to another.

Warning!

The following operation causes data in the seven applicable memory areas (program, function memory, matrix memory, single-variable and paired-variable statistical data memory, value and extended memory, graph function memory, and equation coefficient memory) of the receiving unit to be replaced by the received data. Make sure that you do not need the data stored in the receiving unit before you start this operation.
－To send ALL data

Sënd Uñit

Starting from the LINK Mode，press the function key to enter the send mode．

$$
\begin{aligned}
& \text { F1(TRN) } \\
& \begin{array}{l}
\text { TRANSMIT DATA } \\
\text { FALL } \\
\text { Program } \\
\text { Function Mem } \\
\text { Matrix } \\
\text { Statistics } \\
\text { Variable Mem } \\
\text { Range }
\end{array}
\end{aligned}
$$

Make sure that the pointer is located at ALL， and press 国．to specify itas the data type．

$=$ TRANSMIT $=$ ALL DATA	
YES	NO
F1	F6］

Press（FI）（YES）to start the send operation， or $\mathrm{FE}(\mathrm{NO})$ to abort：without sending anything．
F1（YES）

＝＝TRANSM ITT I NG＝
ALL DATA
TO
TO STOP

＊Pressing $A C$ interrupts the send operation and returns to the LINK Mode．

Receive Unit

Starting from the LINK Mode，press the function key to enter the receive mode．

$$
\begin{aligned}
& \text { F2) }(\mathrm{RCV}) \\
& \text { RECE I VE DATA }
\end{aligned}
$$

－ALL
Program
Function Mem
Matrix Statistios Variable Mem Range

Make sure that the pointer is located at ALL and press 国 to specify it as the data type．

Press E］（YES）start the receive operation， or $\mathrm{FE}(\mathrm{NO})$ to abort without receiving anything．

＊Pressing AC interrupts the receive opera－ tion and returns to the LINK Mode．

The following appears after the send oper－ ation is complete．
COMMUNICATION．．．
COMPLETE
ALL DATA
PAESS［［LAC］

Thes，following appears after the receive operation is complete．

```
COMMUNICATION
COMPLETE
```

ALL DATA
PRESS [Á]
＊Press act to return to the LINK Mode．

9－6 Using PROGRAM to Send Program Data

The following procedures show how to send program data from one fx－7700GE unit to another．You can specify one specific program or all programs for the communication operation．

－To send all PROGRAM data

————Send Unit

\qquad
Starting from the LINK Mode，press （E1）（TRN）to enter the send mode．
Move the pointer to Program，and press 国 to specity it as the data type．

Receive Unit

Starting from the LINK Mode，press （ $\mathrm{Ea}(\mathrm{RCV})$ to enter the receive mode．
Move the pointer to Program，and press 国 to．specify it as the data type．

（－国

＝＝RECEIVE＝＝ PROGRAM $\because:$

ALL DNE
（F1）F2］

Press $\boldsymbol{F 1}(A L L)$ to specify all programs： Fif（ALL）

Press［FI（YES）to start the send operation， or $\operatorname{Fe}(\mathrm{NO})$ to abort without sending anything．
FI（YES）

＝＝TRANSMITT I NG $==$
\therefore ALL PROGRAMS
TO STOP
$\therefore[A C]$

＊Pressing $A 0$ interrupts the send operation and returns to the LINK Mode．

The following appears after the send oper－ ation is complete．

```
COMMUNICATION
GOMPLETE
ALL PROGRAMS
```

PRESS［AC］
＊Press EC to return to the LINK Mode．

Press F1（ALL）to specify all programs． F1（ALL）
$==$ RECE IVING＝＝

ALL PROGRAMS

TO STOP $\therefore \therefore[A C]$

The receiving unit goes directly into receive standby．The actual receive operation starts as soon as the sending unit starts to send data．
＊Pressing aC interrupts the receive opera－ tion and returns to the LINK Mode．

The following appears after the receive operation is complete．

COMMUNI CAT ION COMPLETE
 ALL PROGRAMS

PRESS［AC］

－Tó send à specific program

－——Send Unit
FIT（TRN）
Press（⿴囗玉一（ONE）to specify one program
FE2，（ONE）

```
==TRANSMIT==
TO SELECT:[\downarrow][^]
TO START : [EXE]
\mathbb{PQ}:CYCLOID'
|P1 empty
PE 'MATHEMATICS'
PP3 empt.y
```

Use the © $₫$ and \odot keys to move the pointer to the right of the program area you want to send．After you select the program area press 国e to start the send operation

－Pressing AC interrupts the send operation and returns to the LINK Mode．

After the send operation is complete，the program selection display appears，so you can send another program if you want

Receive Unit

（F2）（RCV）

（－EXE
Press（F2）（ONE）to specify one program． F2（ONE）

```
==RECE IVE==
TO SELECT:[\downarrow][[^]
TO START : [EXE].
PO映 FORMULA'
P1 empty
PP empty
P3 empty
```

Use the（ \odot and $(\bigcirc$ keys to move the pointer to the right of the program area where you want the received program to be stored．After you select the program area press 国㷠 to start the receive operation．

```
( 9 国
==RECEIVING==
TO STOP : [AC]
PD FORMULA
\(\mathbb{P} 1\) 甼empty
PRe empty
P3 empty
```

－Pressing $A C$ interrupts the receive opera－ tion and returns to the LINK Mode．

After the receive operation is complete，the program area selection display appears，so you can receive another program if you want．

9－7 Using FUNCTION MEM to Send Function Memory Data

The following procedures show how to send function memory data from one fx －7700GE unit to another．You can specify one specific function or all functions for the communica－ tion operation．

－To send all FUNCTION MEM data

Starting from－the，LINK Mode，press FFI（TRN）to enter the send mode：
Move the pointer to Function Mem，and press 摖 to specify tit as the data type．

（F1）F2］
Press（a）（ALL）to specify all functions．
（F1）（ALE）

Receive Unit

Starting from the LINK Mode，press Fa（RCV）to enter the receive mode．
Move the pointer to Function Mem，and press 国 to specify it as the data type．

ALL

Press $\operatorname{Fal}(A L L)$ to specify all functions．
［F］（ALL）

＝$=$ RECEIVINGE＝	
ALL FUNCTION MEM	
	\ddots
TO STOP	［AC］

Press F（YES）to start the send operation， or F（NO）to abort without sending anything．

＊Pressing $A C$ interrupts the send operation and returns to the LINK Mode．

The following appears after the send oper－ ation is complete．
EOMNUNICAT ION：
GOMPLETE
ALL FUNCT I ON MEM
PRESS［AC］

The receiving unit goes directly into receive standby．The actüal receive operation starts as soon as the sending unit starts to send data．－

Pressing ta interrupts the receive opera－ tion and returns to the LINK Mode．

The following appears after the receive operation is complete．

いる．

```
COMMUNIGATION
```

COMMUNIGATION
COMPLETE
COMPLETE
ALL FUNCTION MEM
ALL FUNCTION MEM
PRESS : [AC]

```
PRESS : [AC]
```

＊Press－an to return to the LINK Mode．

－To send a specific function

\ldots Send Unit $\ldots \ldots$ Receive Unit＿＿＿＿＿＿＿＿
F1（TRN）
\square
F2］（RCV）

Press（F2）（ONE）to specify one function：

Use the $(\mathcal{Q}$ ）and $(\nabla$ keys to move the pointer to the left of the function memory area you want to send．After you select the function memory press ㄸ⿴囗十一 to start the send operation．

＊Pressing AC interrupts the send operation and returns to the LINK Mode．

After the send operation is complete，the function memory selection display appears， so you can send another function if．you want．

Use the Θ and Θ keys to move the pointer to the left of the function memory area where you want the received function to be stored．After you select the function memory press 国 to start the receive operation．：－：

```
©
\(==\) RECE I V I NG \(\div=\)
TO STOP :[AC]
    f1:cos \(X\)
要fe:
    f 3 :
    f 4 :
    f5: (x+2) (2x-5)
```

＊Pressing AC interrupts the receive opera－ tion and returns to the t INK Mode．

After the receive operation is complete，the function memory selection display appears， so you can receive another function if you want．

9－8 Using MATRIX to Send Matrix Memory Data

The following procedures show how to send matrix memory data from one fx－7700GE unit to another．You can specify one specific matrix or all matrices for the communication operation．

－To send all MATRIX data

\qquad
Starting from the LINK Mode，press国（TRN）to enter the send mode．
Move the pointer to Matrix，and press 国 to specify it as the data type．

Starting from the LINK Mode，press ［20（RCV）to enter the receive mode．
Move the pointer to Matrix，and press 国践 to specify it as the data type．

$==$ REGEIVE $==$
MATRIX

Press Fi（ALL）to specify all matrix data．

Press FI（YES）to start the send operation， or $\operatorname{F6}(\mathrm{NO})$ to abort without sending anything．
F1（YES）

＝＝TAANSMITTING $==$
ALL MATRICES
TO STOP

＊Pressing Ac interrupts the send operation and returns to the LINK Mode．

The following appears after the send oper－ ation is complete．

Press［Fi（ALL）to specify all matrix data． （F1）（ALL）
$==$ RECE IVING＝́․․

ALL MATRICES

TO STOP $:[A C]$

The receiving unit goes directly into receive standby．The actual receive operation starts as soon as the sending unit starts to send data．
＊Pressing AC interrupts the receive opera－ tion and returns to the LJNK Mode．

The following appears after the receive operation is complete．

```
COMMUNICATION
```

COMMUNICATION
COMPLETE

```

\section*{ALL MATRICES}
```

PRESS［AC］
ALL MATRICES
PRESS [AC]

```
＊Press AC to return to the LINK Mode．

\section*{－To send a specific matrix}

Send Unit
```

F1)(TRN)
\ominus\odot`)

```

Press（ PaNE \(^{(O N}\) ）to specify one matrix．


Use the（ 4 ）and \((\nabla\) keys to move the pointer to the left of the matrix memory area you want to send．After you select the matrix memory press 国 to start the send operation．
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{（ \(⿻\)（P）} \\
\hline \(=\)＝TRANSM & TTING＝＝ \\
\hline TO STOP & ：［AC］ \\
\hline Mat．A & ：None \\
\hline Mat 8 & ： \(2 \times 2\) \\
\hline －Mat C & \(: 3 \times 3\) \\
\hline Mat D & \(\therefore\) None \\
\hline Mat E & None \\
\hline
\end{tabular}
＊Pressing act interrupts the send operation and returns to the LINK Mode．

After the send operation is complete，the matrix memory selection display appears， so you can send another matrix if you want．

\section*{Receive Unit}
（E2）（RCV）
（ \(-(\)（ExE
Press［2］（ONE）to specify one matrix．


Use the（ 3 ）and \((จ\) keys to move the pointer to the left of the matrix memory area where you want the received matrix to be stored．After you select the matrix memory press 国 to start the receive operation．
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{－\(\square^{\text {E }}\)} \\
\hline ＝＝RECE I & I NG＝＝ \\
\hline TO STOP & ：［AC］ \\
\hline Mat A & ：None \\
\hline －Mat B & ：None \\
\hline Mat \(\mathrm{C}^{\text {．}}\) & ：None \\
\hline Mat \(\square\) & ： \(2 \times 2\) \\
\hline Mat \(E\) & ： \(3 \times 3\) \\
\hline
\end{tabular}
＊Pressing AC interrupts the receive opera－ tion and returns to the LINK Mode．

After the receive operation is complete，the matrix memory selection display appears， so you can receive another matrix if you want．

\section*{9－9 Using STATISTICS to Send Statistical Memory Data}

The following procedures show how to send statistical memory data from one fx－7700GE unit to another．You can specify single－variable（standard deviation）or paired－variable （regression）data for the communication operation．
－To send single－variable（standard deviation）data

Starting from the LINK Mode，press Fi（TRN）to enter the send mode．
Move the pointer to Statistics，and press［⿴囗玉영
to specify it as the data type．

［F1］F2］
Press［F1（SD）to specify single－variable （standard deviation）data．
\begin{tabular}{l} 
F1（SD） \\
\begin{tabular}{|c|}
\hline\(==T R A N S M I T==\) \\
SD DATA \\
\\
YES
\end{tabular} \\
\hline Fi
\end{tabular}

Receive Unit \(\qquad\)
Starting from the LINK Mode，press ［ F 2 （ RCV ）to enter the receive mode．
Move the pointer to Statistics，and press［⿴囗玉 to specify it as the data type．

\(==\) RECEIVE＝＝
STATISTICS

SD REC
［F1］F2］
Press［Fi（SD）to specify single－variable （standard deviation）data

F1（SD）
＝＝RECEIVING＝\(=\)

SD DATA

TO STOP ：［AC］

Press [F1(YES) to start the send operation; or EE(NO) to abort without sending anything.

FI(YES)
\begin{tabular}{cc}
\hline\(==\) TRANSM I TT ING \(==\) \\
SD DATA & \\
TO: STOP & [AC ]
\end{tabular}
*Pressing \(A C\) interrupts the send operation and returns to the LINK Mode.

The receiving unit goes directly into receive standby. The actual receive operation starts as soon as the sending unit starts to send data.
*Pressing act interrupts the receive operation and returns to the LINK Mode:
- To send paired-variable (regression)


Press [2(REG) to specify paired-variable (regression) data.


Press EII(YES) to start the send operation, or EG(NO) to abort without sending anything.
\[
\begin{aligned}
& \text { F- (YES) } \\
& \begin{array}{cc}
\text { ==TRANSM ITT ING }== \\
\text { REG DATA } & \ddots \\
\ddots & \ddots \\
\ddots & \ddots \\
\text { TO STOP } & :[A C]
\end{array}
\end{aligned}
\]
*Pressing \(\begin{aligned} & \text { Ac interrupts the send operation }\end{aligned}\) and returns to the LINK Mode.

The following appears after the send operation is complete
\(\left[\begin{array}{ll}\text { COMMUNICATION } \\ \text { COMPLETE } \\ \text { REG DATA } & \\ \\ \text { PRESS [AC] }\end{array}\right]\)

The-receiving unit goes directly into receive standby. The actual receive operation starts as soon as the seriding unit starts to-send data.
"Pressing \(A C\) interrupts the receive operation and returns to the LINK Mode.

The following- appears after the receive operation is complete.
```

COMMLNICAT ION
COMPLETE

```
REG DATA

PRESS [AC]
*Press \(4 \subset\) to return to the LINK Mode.

\section*{9-10 Using VARIABLE MEM to Send Value Memory Data}

The following procedures show how to send value memory data from one tx- 7700 GE unit to another. You can specify all variable: memories, variable memories from \(A\) through \(Z\) only, or expanded variable memories only.
- To send all VARIABLE MEM data

Starting from the LINK Mode, press (F1)(TRN) to enter the send mode.
Move the pointer to Variable Mem, and press 国 to specify it as the data type.
\begin{tabular}{|c|}
\hline (®)® \\
\hline \begin{tabular}{l}
\(==\) TRANSMIT \(==\) \\
VARIABLE MEM
\end{tabular} \\
\hline ALL A~7 Dinil \\
\hline
\end{tabular}

Press [F1(ALL) to specify all value memories.
F1(ALL)
\begin{tabular}{|ll|}
\hline\(==\) TRANSM IT \(T==\) \\
ALL & \(\cdots\) \\
& \\
VAR I ABLE & MEM \\
YES & NO \\
\hline FI & F6 \\
\hline
\end{tabular}

Press [Fi(YES) to start the send operation, or \(\operatorname{Fe}(\mathrm{NO})\) to abort without sending anything.
F1](YES)
ALL , VAR I ABLE MEM
TO STOP \(:\) [AC]
- Receive Unit

Starting from the LINK Mode, press [20(RCV) to enter the receive mode.
Move the pointer to Variable Mem, and press 四 to specify it as the data type.

Press Fil(ALE) to specify all value memories.
F1(ALL)
==RECE I V I NG==..
ALL VAR I ABLE MEM
TO STOP \(:\) [AG]

The receiving unit goes directly into receive standby. The actual receive operation starts as soon as the sending unit starts to send data.

Pressing AC interrupts the serid operation and returins to the LINK Mode.

The following appears after the send operation is complete.
```

COMMUN I CAT I ON COMPLETE

```

ALL VARIABLE MEM

PRESS [AO]

Pressing AC interrupts the receive operation ind ieturns to the LINK Mode.

The following appears after the receive operation is complete.
```

COMMUN I CAT I ON
COMPLETE

```

ALL VAAIABLE MEM

PRESS [AC]
*Press AC to return to the LINK Mode.
- To send data from variable memories \(A\) through \(Z\) only


Press 텽 (A ~ Z ) to specify value memories A through \(Z\) only
\[
\begin{aligned}
& \text { E2 (A }-Z) \\
& \begin{array}{l}
\text { ==TRANSM I T }== \\
\text { A Z } \\
\\
\text { YARI ABLE } \\
\text { YES }
\end{array} \\
& \text { FIEM }
\end{aligned}
\]

\section*{Receive Unit}

\section*{( Fa ( RCV ) \\ }

Press F2 ( \(A \sim Z\) ) to specify value memories A through \(Z\) only.
\[
\text { F2) }(A \sim Z)
\]
\begin{tabular}{c}
\(==\) RECE IVING \(=\) \\
A \(\sim Z\) \\
VARIABLE MEM \\
TO STOP \(:\) [AC] \\
\hline
\end{tabular}

Press Fil(YES) to start the send operation, or \(\operatorname{F6}(\mathrm{NO})\) to abort without sending anything.

\section*{[1](YES) \\ \(==\) TRANSM ITTING==
A Z V VARIABLE MEM
\(\vdots\)
\(\vdots\)
TO STOP \(\quad:[A C]\)}
*Pressing 40 interrupts the send operation and returns to the LINK Mode.

The following appears after the send operation is complete.

The receiving unit goes directly into receive standby. The actual receive operation starts as soon as the sending unit starts to send data.
*Pressing \({ }^{4 C}\) interrupts the receive operation and returns to the LINK Mode.

The following appears after the receive operation is complete.
```

GOMMUN ICAT I ON
COMPLETE
A~Z VARIABLE MEM
PRESS [AC] ,

```
*Press \(\operatorname{AC}\) to return to the LINK Mode.
- To send data from extended memories only
\(\begin{array}{r}\text { - To send data trom extended } \\ \hline\end{array}\)


\section*{F1 (TRN) \\ }

Press F3(Dim) to specify extended value memories only.
\begin{tabular}{l} 
FS)(Dfm) \\
\begin{tabular}{l} 
==TRANSM I T \(==\) \\
DEF INED MEMOR IES \\
\\
YES
\end{tabular} \\
\hline
\end{tabular}

Press FI(YES) to start the send operation, or F6(NO) to abort without sending anything.
F1](YES)
O=TRANSMITTING \(==\)
DEFINED MEMORIES

TO STOP \(\quad:[\) AC ]
*Pressing \(\operatorname{AG}\) interrupts the send operation and returns to the LINK Mode.

The following appears after the send operation is complete.
COMMUNICAT ION
DOMPLETE
PRESED MEMORIES
[AC]

The receiving unit goes directly into receive standby. The actual receive operation starts as soon as the sending unit starts to send data.
*Pressing \(A C\) interrupts the receive operation and returns to the LINK Mode.

The following appears after the receive operation is complete.
```

GOMMUN ICAT I ON

```
COMPLETE

\section*{DEF INED MEMORIES}
*Press act to return to the LINK Mode.

\section*{9-11 Using RANGE to Send Graph Range Parameters}

The following procedures show how to send graph range parameters from one.fx-7700GE unit to another.
－To send RANGE data
\(\because\) Send Unit
Starting from the LiNK Mode，press ［FI（TRN）to enter the send mode．
Move the pointer to Range，and press 国 to specify it as the data type．


Press F11（YES）to start the send operation， or FO \(_{6}(\mathrm{NO})\) to abort without sending anything．
FO（YES）
\begin{tabular}{ll}
＝＝TRANSM I TT I NG \(==\) \\
RANGE & \\
TO STOP & ［［AC］ \\
\hline
\end{tabular}
＊Pressing \(A C\) interrupts the send operation and returns to the LINK Mode．

The following appears after the send oper－ ation is complete．
```

COMMUNICAT ION
COMPLETE

```
RANGÉ
    PRESS [AC]
————Receive Unit
Starting from the LINK Mode，press F2（RCV）to enter the receive mode．
Move the pointer to Range，and press［⿴囗玉 to specify it as the data type．


Press（F1（YES）start the receive operation， or \(\mathrm{FE}(\mathrm{NO})\) to abort without receiving anything．
\begin{tabular}{|c|c|}
\hline （YES） & \\
\hline \multicolumn{2}{|l|}{\(==\) RECE I V ING＝＝} \\
\hline RANGE & \\
\hline －\％ & \\
\hline TO STOP & ：［AC］ \\
\hline
\end{tabular}
＊Pressing AC interrupts the receive opera－ tion and returns to the LINKMode．

The following appears after the receive operation is complete．
```

GOMMUNICAT I ON
GCMPLETE
RANGE

```

\section*{9－12 Using FACTOR to Send Graph Range Parameters}

The following procedures show how to send factor data for graph zoom operations from one fx－7700GE unit to another

\section*{－To send FACTOR data}
\(\qquad\) Send Unit \(\qquad\)
Starting from the LINK Mode，press FI（TRN）to enter the send mode．
Move the pointer to Factor，and press（ （aft to specify it as the data type．


Press（F0）（YES）to start the send operation， or EE（NO）to abort without sending anything．
F1（YES）
＝＝TRANSMITTING＝
FACTOR
TO STOP
＊Pressing AC interrupts the send operation and returns to the LINK Mode．

\section*{Receive Unit}

Starting from the LINK Mode，press ［ 2 （RCV）to enter the receive mode．
Move the pointer to Factor，and press 国 to specify it as the data type．


Press F－1（YES）start the receive operation， or （F6）（NO）to abort without receiving anything．

＊Pressing Ac interrupts the receive opera－ tion and returns to the LINK Mode．

The following appears atter the send operation is complete.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{COMMUNICAT ION COMPLETE} \\
\hline & FACTOR \\
\hline & PRESS [AC] \\
\hline
\end{tabular}

The following appears after the receive operation is complete.
\begin{tabular}{c} 
COMMUNICAT ION \\
COMPLETE \\
FACTOR \\
PRESS [AC] \\
\hline
\end{tabular}
*Press \(A C\) to return to the LINK Mode.

\section*{9-13 Using GRAPH FUNCTION to Send Graph Function Memory Data}

The following procedures show how to send graph function memory data from one fx-7700GE unit to another. You can specify one specific function or all functions for the communication operation.
- To send all GRAPH FUNCTION data

Starting from the LINK Mode, press F1(TRN) to enter the send mode : \(:\); Move the pointer to Graph Function; and press 国 to specify it as the data type.

[F1) F2

\section*{—— Receive Unit}
\(\qquad\) Starting from the LINK Mode; press F2(RCV) to enter the receive mode. Move the pointer to Graph, Function, and press 国 to specity it as the data type.

(F1) F2]

Press \({ }^{[1](A L L)}\) to specify all functions. FI1(ALL)


Press (F1)(YES) to start the send operation, or \(\operatorname{EG}(\mathrm{NO})\) to abort without sending anything.
\[
\begin{array}{|c}
\text { F1(YES) } \\
\begin{array}{|cc}
\text { =TRANSMITTING= } \\
\text { ALLGRAPH FUNC } \\
\text { TO STOP } & \text { [AC] }
\end{array}
\end{array}
\]
*Pressing AC interrupts the send operation and returns to the LINK Mode.

The following appears atter the send operation is complete.
COMMUNICATION
COMPLETE
ALLEAAPH FUNC
PRESS [AC]

Press FI(ALL) to specify all functions.
FT(ALL) \(\because\)
\(==\) RECE IVING \(=\)
ALL GRAPH FUNC
TO STOP \(\quad \therefore\) [AC]

The receiving unit goes directly into receive standby. The actual receive operation stafts as soon as the sending unit starts to send data.
*Pressing AC interrupls the receive operation and returns to the LINK Mode.

The following appears after the receive operation is complete. ...
```

```
COMMUNICATION
```

```
COMMUNICATION
COMPLETE
COMPLETE
ALL GRAPH FUNC
ALL GRAPH FUNC
PRESS [AC]
```

```
PRESS [AC]
```

```
, f,

\section*{－To send a specific function}

Send Unit \(\qquad\)
```

F1(TRN)
\ominus\ominus\ominus\ominus\ominus\ominus\ominus\ominus
[目]

```

Press F2（ONE）to specify one function．
```

F2](ONE)
==TRANSMI T==
TO SELEDT:[[] [+]
TO START : [EXE]
|Y1:
YE:SIn X
Y3:cos·X
Y4:
Y5:

```

Use the（ © and \((\odot\) keys to move the pointer to the left of the function memory area you want to send：After you select the function memory press EEE to start the send operation．

＊Pressing AC interrupts the receive opera－ tion and returns to the LINK Mode．

After the send operation is complete，the function memory selection display appears， so you can send another function if you want．


F2（ RCV ）
 （EX）

Press（ \(\mathrm{F2}\)（ONE）to specify one function
F2（ONE）
\[
\begin{aligned}
& \text { ==RECE I VE== } \\
& \text { TO SELECT: [ } \downarrow \text { ][ } \uparrow] \\
& \text { TO START : [EXE] } \\
& \text { 畳Y1: } \\
& \text { YZ: } \\
& Y 马: \log X \\
& \text { Y4: log }(x+1) \\
& \text { Y5: }
\end{aligned}
\]

Use the（ 4 ）and（ 9 keys to move the pointer to the left of the function memory area where you want the received function to be stored．Atter you select the function memory press［区］to start the receive operation．
\[
\begin{aligned}
& \text { © EXE } \\
& ==\text { RECEIV ING }== \\
& \text { TO STOP : [AC] } \\
& \text { Y1: } \\
& \text {-YR: } \\
& \text { Y3: } 10 \mathrm{~g} X \\
& \text { Y4: log }(x+1) \\
& \text { Y5: }
\end{aligned}
\]
＊Pressing \(\boldsymbol{A C}\) interrupts the receive opera－ tion and returns to the LINK Mode．

After the receive operation is complete，the function memory selection display appears， so you can receive another function if you want．

\section*{9－14 Using EQUATION to Send Equation Data}

The following procedures show how to send equation memory data from one fx － 7700 GE unit to another．You can specify linear equations with two or three unknowns，or quadrat－ ic equation coefficient values for the communication operation．

\section*{－To send linear equation data}

Starting from the LINK Mode，press F1（TRN）to enter the send mode．
Move the pointer to Equation，and press Exe to specify it as the data type．

（Fi］［F］
Press Fi（SIM）to specify simultaneous equations（with two or three ưnknowns）．


\section*{Receive Unit}
\(-\quad\). Starting from the LINK Mode，press （ F 2 （RCV）to enter the receive mode．
Move the pointer to Equation，and press 国 to specify it as the data type．


Press F1（SIM）to specify simultaneous equations（with two or three unknowns）．

\section*{FI（SIM）}
＝＝RECEIVING \(=\)

SIMULT EQU

TO STOP ：［AC］

Press [1](YES) to start the sendoperation; or \(\mathrm{FE}(\mathrm{NO})\) to- abort without sending anything.

*Pressing Act interrupts the send operation and returns to the LINK Mode.

The receiving unit goes directly-into receive standby. The actual receive operation starts as soon as the sending unit starts to send data.
*Pressing Ag interrupts the receive operation and returns to the LINK Mode.
- To send quadratic equation coefficient data
—_Send Unit


Press 畮(PLY) to specify quadratic equation coefficient data.


Press (Fi)(YES) to start the send operation, or \([\mathrm{F} \boldsymbol{\mathrm { F }}(\mathrm{NO})\) to abort without sending anything.
(FITES)
\begin{tabular}{cc}
\(==\) TRANSMITT I NG \(==\) \\
POLY EQU & \(\ddots\) \\
& \(\ddots\) \\
TO STOP & \(:[A C]\)
\end{tabular}
*Pressing AC interrupts the send operation and returns to the LINK Made.

The following appears after the send operation is complete.
\begin{tabular}{|cc|}
\hline COMMUN ICAT ION \\
COMPLETE \\
POLY EQU \\
PRESS \([A C]\) \\
\hline
\end{tabular}

The receiving unit goes directly into receive standby. The actual receive operation starts as soon as the sending unit starts to send data.
*Pressing \(\mathbb{A C}\) interrupts the receive operation and returns to the LINK Mode.

The following appears after the receive operation is complete.
```

COMMUN I CAT I ON
COMPLETE

```
PGLY EQU
PRESS [AC]
*Press AC to return to the LINK Mode.

\section*{9-15 Using BACK UP to Send All Mode Settings and Memory Data}

The following procedures show how to send all mode settings and memory data from one fx-7700GE unit to another. This operation is helpful if you wish to back up memory contents ușing another unit:

\section*{Warning!}

If any data communication problem occurs during data communications, the receiving unit is automatically reset. To avoid this, make sure that all connections are secure and take' care to avoid anything that might possibly cause a data communication problem.

\section*{- To back up all data}

\section*{Uni}

Starting from the LINK Mode, press [Fi(TRN) to enter the send mode.
Move the pointer to Back Up, and press 厥 to specify it as the data type.


Press (ED(YES) to start the send operation, or \([\) F6(NO) to abort without sending anything.
FI(YES)
==TRANSM ITT I NG \(==\)
BACK UP
TO STOP \(:\) [AC]
*Pressing \(\operatorname{AG}\) interrupts the send operation and returns to the LINK Mode.

The following appears after the send oper: ation is complete.
```

COMMUNICATION
COMPLETE

```

BACK UF

PRESS [AO]

\section*{Receive Unit}

Starting from the LINK Mode, press [ F2 \(_{2}(\mathrm{RCV}\) ) to enter the receive mode.
Move the pointer to Back Up, and press [ee
to specify it as the data type.


Press (FI)(YES) to star the receive operation, or \(\mathrm{FG}(\mathrm{NO})\) to abort without receiving anything.

FTI(YES)
\begin{tabular}{ll} 
==RECE IV I NG= \(=\) \\
BACK UP \\
TO STOP & \\
\\
\end{tabular}
*Pressing \(A C\) interrupts the receive operation and returns to the LINK Mode.

The following appears after the receive operation is complete.
```

COMMUNICATION
COMPLETE

```

BACK UP

\section*{9-16 S̄creen Copy Function}

The following procedure sends a bit mapped screen shot of the display to a connected computer.

\section*{To Copy the Screen}
1. Connect the unit to a personal computer (page 225).
2. Display the set up screen and specify COPY as the function of the nex key (MDISP/COPY Mode).
3. Display the screen you want to copy and press the key

You cannot send the following types of screens to a computer
-The screen that appears while a data communication operation is in progress.
*A screen that appears while a calculation is in progress.
- The screen that appears following the reset operation.
-The low battery message.
Note also that the flashing cursor is not included in the screen image that is sent to the computer.

\section*{9-17 Data Communications Precautions}

Note the following precautions whenever you perform data communications.
- A TRANSMIT ERROR occurs whenever you try to send data to a receiving unit that is not yet standing by to receive data. When this happens, press Ac to clear the error and try again, after setting up the receiving unit to receive data.
-A RECEIVE ERROR occurs whenever the receiving unit does not receive any data approximately six minutes after it is set up to receive data. When this happens, press \(A C\) to clear the error
- A TRANSMIT ERROR or RECEIVE ERROR occurs during data communications if the cable becomes disconnected, if the parameters of the two units do not match, or if any other communications problem occurs. When this happens, press \(A C\) to clear the error and correct the problem before trying data communications again. In this case, any data received before the problem occurred is cleared from the receiving unit's memory.
-A MEMORY FULL operation occurs if the receiving unit memory becomes full during data communications. When this happens, press AC to clear the error and delete unneeded data from the receiving unit to make room for the new data, and then try again.

\section*{Appendix A Power Supply}

This unit is powered by four AAA-size (LR03 (AM4) or UM-4) batteries. In addition, it uses a single CR2032 lithium battery as a back up power supply for the memory.

\section*{\(\square\) When to Replace Batteries}

Replace batteries when the display of the calculator becomes dim and difficult to read, even if you adjust the contrast (page 26) to make it darker
If the following message appears on the display, immediately stop using-the calculator and replace batteries. If you try to continue using the calculator, it will automatically switch power off, in order to protect memory contents.
You will not be able to switch power back on until you replace batteries.
**Low battery!**

Be sure to replace batteries at least once every two years, no matter how much you use the calculator during that time.

\section*{Warning!}

If you remove both the main power supply and the memory back up batteries at the same time, all memory contents will be erased. Be sure to read the following section before doting anything.

\section*{■Replacing Batteries}
- Be sure that you have back up copies of all your memory contents before replacing batteries.
- Never remove the main power supply and the memory back up batteries at the same time. Doing so will erase the contents of the memory.
- Be sure that the calculator is switched off whenever you replace batteries. If the calculator is on, data stored in memory will be erased.
- Never switch the calculator on while batteries are not loaded or while a battery holder is not in place. Doing.so will erase the contents of the memory

\section*{Precautions:}

Incorrectly using batteries can cause them to burst or leak, possibly damaging the interior of the unit. Note the following precautions:
- Be sure that the positive \(\Theta\) and negative \(\Theta\) poles of each battery are facing in the proper direction.
- Never mix batteries of different types.
- Never mix old batteries and new ones. .
- Never leave dead batteriés in the battery compartment.
-Remove the batteries if you do not plan to use the unit for long periods.
- Replace the batteries at least once every year, no matter how much the unit is used during that period.
- Never try to recharge the batteries supplied with the unit.
-Do not expose batteries to direct heat, let them become shorted, or try to take them apart.
(Should a battery leak, clean out the battery compartment of the unit immediately, taking care to avoid letting the battery fluid come into direct contact with your skin.)

Keep batteries out of the reach of smallichildren. If swallowed, consult with a physician immediately.)
- To replace the main power supply batteries
(1) Switch the power of the calculator off.
(2) Slide the battery compartment cover on the back of the unit in the direction indicated by the arrow.
(3)Slide up the switch on the battery holder to the OPEN side.

(4) Remove the four ald batteries.
(5) Wipe off four new batteries with a soft, dry cloth. Load them into the calculator so that their positive \(\oplus\) and negative \(\Theta\) ends are facing properly. Be sure to replace all four batteries with new ones.
(6) Replace the battery holder and fasten it in place. Slide the switch back down (LOCK side)

(7) Replace the battery compartment cover, sliding in the direction opposite that indicated by the arrow.
(8) Switch the power of the calculator on and check for proper operation.


\section*{Important}
*Never remove the main power supply and the memory back up batteries from the unit at the same time.
*Be sure to switch the unit off before replacing batteries. Replacing batteries with power on will cause data in memory to be deleted.
*Never switch power on main power supply batteries are removed from the unit or while the battery holder is not securely in place. Doing so will cause data in memory to be deleted.
*Be sure to replace all four batteries with new ones.
- To replace the memory back up battery
(1) Switch the power of the calculator off.
(2) Slide the battery compartment cover on the back of the unit in the direction indicated by the arrow.
(3) Remove screw (4) from the battery holder.
(4) Remove the old battery.

(5) Wipe off the surfaces of a new battery with a soft, dry cloth. Load it into the calculator so that its positive \(\oplus\) side is facing up.
(6) Replace the battery holder and fasten it in place with screw (A).
(7) Replace the battery compartment cover, sliding in the direction opposite that indicated by the arrow.
(8) Switch the power of the calculator on and check for proper operation.

(4) Press (FI)(YES) to reset the calculator, or \(\mathrm{FE}(\mathrm{NO})\) to abort the reset operation.
ET1 (YES)


Resetting the calculator initializes the modes to the following settings.
\begin{tabular}{|c|c|}
\hline Item & Initial Setring \\
\hline Mode & CoMP \\
\hline Unit of Angular Measurement & Deg \\
\hline Norm & Norm 1 \\
\hline BASEN & Dec \\
\hline Value Memories & Clear \\
\hline Expanded Memory & Clear \\
\hline Function Memory & Clear \\
\hline Ans Memory & Clear \\
\hline Graphic Display & Clear \\
\hline Text Display & Clear \\
\hline Equation Memory & Clear \\
\hline Statistical Data Memory & Clear \\
\hline Matrix Memory & \\
\hline Graphic Function Memory & Clear \\
\hline Input Buffer & Clear \\
\hline Program & \\
\hline Clear \\
\hline
\end{tabular}
*A RESET button is also located inside of the pattery compartment, which you can open by removing the cover on the back of the unit. Pressing this button with a thin, pointed object displays the reset confirmation message shown on page 26.1 .

\section*{Appendix C Function Reference}

\section*{- Manual Calculations}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{Mode specification} & COMP Mode (see page 18) & Four arithmetic and function calculations. \\
\hline & BASE Mode (see page 18) & Binary, octal, decimal, hexadecimal conversions and calculations, logical operations. \\
\hline & SD Mode & Standard deviation calculations (1-variable statistical). \\
\hline \multirow[t]{3}{*}{} & -REG Móde (see page 18) & Regression calculations (paired variable statistical). \\
\hline & MAT Mode (see page 18) & Matrix calculations \\
\hline & EQUA Mode (see page 18) & Quadratic equations, linear equations with two or three unknowns. \\
\hline \multirow[t]{2}{*}{Statistical graph} & SD Mode (see page 78, 156) & For production of single variable statistical graphs. (Bar graphs, line graphs, normal distribution curves) \\
\hline & REG Möde (see page 85, 159) & For production of paired variable statistical graphs. (Regression lines) \\
\hline \multirow[t]{3}{*}{Functions} & Type A functions & \begin{tabular}{l}
Function command input immediately after numeric value. \\
\(\left[x^{2}, x^{-1}, x!, 0^{2}\right.\), ENG symbols]
\end{tabular} \\
\hline & Type B functions & Function command input immediately before numeric value.
\[
\left[\begin{array}{l}
\sin , \cos , \tan , \sin ^{-1}, \cos ^{-1}, \tan ^{-1}, \sinh , \\
\cosh , \tanh , \sinh -1, \cosh ^{-1}, \tanh ^{-1}, \log , \\
\ln , e^{x}, 10^{x}, \sqrt{3}, \sqrt[3]{ }, \text { etc. }
\end{array}\right]
\] \\
\hline & Paired variable functions & \begin{tabular}{l}
Function command input between two numeric values. Numeric value enclosed in parentheses input immediately after function command.
\[
\left[\begin{array}{l}
A x^{y} B \cdot(A \text { to the } B \text { th power }) \\
B \sqrt{V} A(A \text { to the } 1 / B t h \text { power }), \\
\operatorname{Pol}(A, B), \text { Rec }(A ; B)
\end{array}\right.
\] \\
* \(A\) and \(B\) are numeric values.
\end{tabular} \\
\hline  & Immediately exec̄uted functions & Displayed value changed with each press of a key.
\[
[E N G, \overleftarrow{E N G}, \overleftarrow{\square}]
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{Binary，octal， decimal， hexadecimal calculations （see page 44， 46）} & Setting number system &  \\
\hline & Number system specification & \begin{tabular}{l}
Number system for the numeric value entered immediately after can be specitied regardiess of the currently set number system． \\
To specify： \\
Decimal ．．．．．．．．．．．．． \(\mathrm{F} 5(\mathrm{~d} \sim \mathrm{o})\)（FII（ d\()\) \\
Hexadecimal ．．．．．．\({ }^{[55}(\mathrm{d} \sim 0)\) 国（h） \\
 \\
Octal ．．．．．．．．．．．．．．．．．． F 5 （ d ～o） \(\mathrm{FA}(0)\)
\end{tabular} \\
\hline & Logical operations & \begin{tabular}{l}
Input numeric values are converted to binary and each bit is tested．Result is converted back to number system used for input，and then displayed． \\
Not \(\qquad\) Reverse of each bit and \(\qquad\) Logical product of each bit or \(\qquad\) Logical sum of each bit xór \(\qquad\) Exclusive logical sum of each bit xnor \(\qquad\) Exclusive negative logical sum of each bit
\end{tabular} \\
\hline \multirow[t]{6}{*}{Standard deviation calculations （see page 78）} & Data clear &  \\
\hline & Data input & Data［；frequencyl Fi（DT） ＊Frequency can be omitted． \\
\hline & Data deletion ： & Data［；frequency］［ \(\mathrm{E}_{2}\)（CL） ＊Frequency can be omitted． \\
\hline & Result display & \begin{tabular}{l}
 \\
Sum（ \(\Sigma x\) ）： \(\qquad\) \\
 \\
Sum of squares（ \(\Sigma x^{2}\) ）．．．．国（ \(\Sigma\) ） \(\operatorname{FD}\left(\Sigma x^{2}\right)\) 国 \\
Mean（ \(\bar{x}\) ） \(\qquad\) \\
 Population standard deviation（x\(x n\) ） ［ Fa （ DEV ） \(\mathrm{F} 2\left(x \sigma_{n}\right)\)（国 \\
Sample standard deviation（ \(x \sigma_{n-1}\) ） （F4）（DEV）
\end{tabular} \\
\hline & Probability distribution calculations &  \\
\hline & Data storage &  \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multirow[t]{4}{*}{Special functions} & Ans & \begin{tabular}{l}
The latest result obtained in manual or pro－ gram calculations is stored in memory itt is recalled by pressing 배Nㄱ ans \\
＊Mantissa of numeric value is： 13 digits．
\end{tabular} \\
\hline & Replay & \begin{tabular}{l}
－After calculation results are obtained，the for－ mula can be recalled by pressing either（4）or 0. \\
－If an error is generated，pressing either © or © will cancel the error and the point where the error was generated will be indicated by a blinking cursor．
\end{tabular} \\
\hline & Multistatement & Colons are used to join a series of statements or calculation formulas．If joinfed using＂ 4 ＂， the calculation result to that point is displayed． \\
\hline & Memory & \begin{tabular}{l}
The number of memories can be expanded from the standard 28. \\
Memories can be expanded in unils of one up to＇ 500 （for a total of 528）． \\
Eight steps are required for one memory． \\

\end{tabular} \\
\hline \multirow[t]{8}{*}{Graph fụnctiōn} & Range & \begin{tabular}{l}
Graph range settings \\
Xmin ．．．．．．．．．Minimum value of \(x\) \\
Xmax ．．．．．．．．．Maximum value of \(x\) \\
Xscl ．．．．．．．．．．Scale of X－axis（space between
\(\qquad\) points） \\
Ymin Minimum value of \(y\) \\
Ymax \(\qquad\) Maximum value of \(y\) \\
Yscl ．．．．．．．．．．．Scale of Y －axis（space between points） \\
T．\(\theta \mathrm{min}\) ．．．．Minimum value of \(\mathrm{T} / \theta\) \\
T，\(\theta\) max ．Maximum value of \(\mathrm{T} / \theta\) \\
T，\(\theta\) ptch ．．．Pitch of T／\(\theta\)
\end{tabular} \\
\hline & Trace ：．．．．： & Moves pointer on graph．Current coordinate location is displayed． \\
\hline & Plot & Marks pointer（blinking dot）at any coordinate on the graph display． \\
\hline & Line & Connects with a straight line two points creat－ ed with plot function． \\
\hline & Box & Defines area for zoom in． \\
\hline & Factor & Defines factor for zoom in／zoom out． \\
\hline & Original & Returns graph to original dimensions after zoom operation． \\
\hline & Scroll & Scrolls screen to view parts of graphs that are off the display． \\
\hline
\end{tabular}

■Program Calculations
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Program input} & Calculation made & \begin{tabular}{l}
Mode that conforms with program specified by \\
 EES（MAT））
\end{tabular} \\
\hline & Program area specification & Cursor is moved to the desired program area name（ Po through \(\mathrm{P} 9, \mathrm{PA}\) through \(\mathrm{PZ}, \mathrm{Pr}, \mathrm{P}\) ） using（ \(\triangle\) ）and \((\boxed{)}\) ，and 国 is pressed． \\
\hline Program execution & Program area specification & \begin{tabular}{l}
 area name 図． \\
Program area name：P0 through P9，PA through ：PZ，Pr，P \(\theta\)
\end{tabular} \\
\hline \multirow[t]{2}{*}{Program editing} & Program area specification & Cursor is moved to the desired program area name（ PO through \(\mathrm{Pg}, \mathrm{PA}\) through \(\mathrm{PZ}, \mathrm{Pr}, \mathrm{P} \theta\) ） using（（）or ©，and 四 is pressed． \\
\hline & Editing & \begin{tabular}{l}
Cursor is moved to position to be edited using （ \(],(\Theta)\) or \((\Theta)\) \\
－Press correct key for corrections． \\
－Press 圆 for deletions． \\
 Insertion：
\end{tabular} \\
\hline \multirow[t]{2}{*}{Program delete} & Deletes specific program & \begin{tabular}{l}
Cursor is moved to the desired program area name（ P 0 through P9，PA through PZ，Pr，P \(\theta\) ） \\
 pressed．
\end{tabular} \\
\hline & Clears all programs &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{4}{*}{Program commands} & Unconditional jump & Program execution jumps to the Lbl \(n\) which corresponds to Gote \(n\). : \(n=0\) through 9 \\
\hline & Conditional jumps & \begin{tabular}{l}
If. conditional expression is true, the statement after " \(\Rightarrow\) " is executed. If not true, execution jumps to the statement following next " ل \("\) ", ": "or "d". \\
(F) : Formula \\
( \(\overline{\mathrm{A}}\) : Relational operator \\
(S) : Statement \\
*The relational operator is:
\[
=\neq>,<, \geq, \leq
\]
\end{tabular} \\
\hline & Count jumps & \begin{tabular}{l}
The value in a memory is increased or decreased. If the value does not equal 0 , the next statement is executed. If it is 0 , a jump is performed to the statement following the next \\
Increase \\
S : Statement \\
(V) Value in mernory
\end{tabular} \\
\hline & Subroutines & Program execution jumps from main routine to subroutine indicated by Prog \(n\) ( \(n=0\) through 9, A through \(Z_{1} r, \theta\) ). After execution of the subroutine, execution returns to the point following Prog \(n\) in the original program area. \\
\hline
\end{tabular}

\section*{Appendix D Error Message Table}
\begin{tabular}{|c|c|c|}
\hline Message & Meaning & Countermeasure \\
\hline Syn ERAOR & \begin{tabular}{l}
(1) Calculation formula contains ar error. \\
(2) Formula in a program contains an error.
\end{tabular} & \begin{tabular}{l}
(1) Use (9) or 6 to display the point where the error was generated and correct it. \\
(2) Use (9) or (0) display the point where the error was generated and then correct the program.
\end{tabular} \\
\hline Ma ERP & \begin{tabular}{l}
(1) Calculation result exceeds calculation range. \\
(2) Calculation is performed outside the input range of a function. \\
(3) Ilogical operation (division by zero, etc.) \\
(4) Poor precision in differential calculation results. \\
(5) Poor precision in integration calculation results. \\
(6) Cannot find results of equation calculations.
\end{tabular} & \begin{tabular}{l}
(1)(3) (3) \\
Check the input: numeric value and correct it. \\
When using memories, check that the numeric values stored in memories are correct. \\
(4) Try using a smaller value for \(\Delta x\) (x increment/decrement). \\
(5) Try using a larger value for \(n\) (number of partitions). \\
(6) Check the coefficients of the equation.
\end{tabular} \\
\hline Go ERROR & \begin{tabular}{l}
(1) No corresponding Lbl \(n\) for Goto \(n\). \\
(2) No program stored in program area: \(\mathrm{P} n\) which corresponds to Prog \(n\) :
\end{tabular} & \begin{tabular}{l}
(7) Correctly input a LbI \(n\) to correspond to the Goto \(n\), or delete the Goto in if not required. \\
(2) Store a program in program area \(\mathrm{P} n\) to correspond to Prog \(n\), or delete the Prog \(n\) if not required.
\end{tabular} \\
\hline Ne ERROR & - Nesting of subroutines by Prog \(n\) exceeds 10 levels: & \begin{tabular}{l}
- Ensure that Prog' \(n\) is not used to return from subroutines to main routine If used, delete any unnecessary Prog \(n\). \\
- Trace the subroutine jump destinations and ensure that no jumps are made back to the original program area. Ensure that returns are made correctly.
\end{tabular} \\
\hline Stk ERROR & - Execution of calculations that exceed the capacity of the stack for numeric values or stack for calculations. & \begin{tabular}{l}
- Simplify the formulas to keep stacks within 10 levels for the numeric values and 26 levels for the calculations. \\
- Divide the fórmüla into two or more parts.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Mem ERROR & \begin{tabular}{l}
(1) Specified expanded value memory does not exist. \\
(2) Nol enough memory to expand value memories specified number. \\
(3) Not enough memory to input a function into furction memory. \\
(4) Not enough memory to create a matrix using the specified dimension. \\
(5) Not enough memory to hold matrix callculation result. \\
(6) Not enoügh memory to-store statistical data. \\
(7) Not enough-memory to input coefficient for equation. \\
(8) Not enough memory to hold equation calculation result. \\
(9) Not enough memory to hold function input in the Graph Mode for graph drawing.
\end{tabular} & \begin{tabular}{l}
(1) Use surif airio to correctly expand the number of value memories. \\
(2)(3)(4)(5)(6)(7)(8)(9) \\
- Keep the number of value memories you use for the operation within the number of value memories currently available. \\
- Simplify the data you are trying to store to keep it within the available miemory capacity. \\
-Delete nó longer needed data to make foom for the new data.
\end{tabular} \\
\hline Arg ER & Incorrect argument specification for a command that requires an argument. & \begin{tabular}{l}
Correct the argument. \\
- Sci \(n\), Fix \(n\) : \(n=\) integer from 0 through 9 . \\
-Lbl \(n_{1}\) Goto \(n: n=\) integer from 0 through 9 . \\
- Prog \(n: n=0\) through 9, A through \(Z, r, \theta\). \\
-Defm \(n: n=\) integer from 0 up to the number of remaining bytes.
\end{tabular} \\
\hline & & -Check matrix dimension. \\
\hline TRANSMIT ERROR & .Problem with cable connection or parameter setting during data communications. & \begin{tabular}{l}
-Check cable connection. \\
-Check to see that the parameters of the sending unit and receiving unit are identical.
\end{tabular} \\
\hline RECEIVE ERROR! & Problem with cable connection or parameter setting during data communications. & \begin{tabular}{l}
-Check cable connection. \\
-Check to see that the parameters of the sending unit and receiving unit are identical.
\end{tabular} \\
\hline \begin{tabular}{l}
MEMORY \\
FULLL!
\end{tabular} & Memory of receiving unit became full during program data communications: & - Delete some data stored in the receiving unit and try again. \\
\hline
\end{tabular}

\section*{Appendix E Input Ranges}

\begin{tabular}{|c|c|c|c|c|}
\hline Function & . Input range.. & Internal dig̈its & Accuracy & Notes \\
\hline \[
\begin{aligned}
& \text { Rec } \\
& (r, \theta)
\end{aligned}
\] & \begin{tabular}{l}
\[
0 \leqq r<1 \times 10^{100}
\] \\
(DEG) \(|\theta|<9 \times 10^{9}{ }^{9}\) \\
(RAD) \(|\theta|<5 \times 10^{7} \mathrm{mrad}\) \\
(GRA) \(|\theta|<1 \times 10^{16} \mathrm{grad}\)
\end{tabular} & 13 digits & As a rule, accuracy is \(\pm 1\) at the 10th digit. & However; for \(\tan A\) :
\[
\begin{aligned}
& |\theta| \neq 90(2 n+1): \mathrm{DEG} \\
& |\theta| \neq \pi / 2(2 n+1): \mathrm{RAD} \\
& |\theta| \neq 100(2 n+1): \mathrm{GRA}
\end{aligned}
\] \\
\hline  & \begin{tabular}{l}
\[
|a|, b, c<1 \times 10^{100}
\]
\[
0 \leq b, c
\]
\[
|x|<1 \times 10^{100}
\] \\
Hexadecimal display:
\[
|x| \leqq 1 \times 10^{7}
\]
\end{tabular} & , & " &  \\
\hline \(\cdots\left(x^{y}\right)\) & \begin{tabular}{l}
\[
\begin{aligned}
& x>0: \\
& -1 \times 10^{100}<y \log x<100 \\
& x=0: y>0 \\
& x<0: \\
& y=n, \frac{1}{2 n+1}(n \text { is an integer })
\end{aligned}
\] \\
However;
\[
-1 \times 10^{100}<\frac{1}{y} \log |x|<100
\]
\end{tabular} & . & * &  \\
\hline \(\sqrt[4]{y}\) & \begin{tabular}{l}
\[
\begin{aligned}
& y>0: x \neq 0 \\
& -1 \times 10^{100}<\frac{1}{x} \log y<100 \\
& y=0: x>0 \\
& y<0: x=2 n+1, \frac{1}{n}
\end{aligned}
\] \\
( \(n \neq 0, n\) is an integer) \\
However;
\[
-1 \times 10^{100}<\frac{1}{x} \log |y|<100
\]
\end{tabular} & " & \(\because\) &  \\
\hline \(a^{b / c}\) & \begin{tabular}{l}
- Results \\
Total of integer, numerator and denominator, must be within 10 digits (includes division marks). \\
- Input \\
Result displayed as afraction for integer when integer, numerator and denominator are less than \(1 \times 10^{10}\).
\end{tabular} & ! &  &  \\
\hline \[
\begin{gathered}
\text { SD } \\
\text { (REG) }
\end{gathered}
\] & \[
\begin{aligned}
& |x| \leq 1 \times 10^{50} \\
& |y|<1 \times 10^{50} \\
& |n|<1 \times 10^{100} \\
& x \sigma n, y \sigma n, \bar{x}, \bar{y}, \mathrm{~A}, \mathrm{~B}, r: \\
& x \sigma n-1, y \sigma n-1: n \neq 0,1
\end{aligned}
\] & \(\cdots\) &  &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Function & Input range \\
\hline BASE-N & \begin{tabular}{l}
Values after variable within following range: \\
DEG: - \(2147483648 \leqq x \leqq 2147483647\) \\
BIN: \(1000000000000000 \leqq x\) \(\leqq 111111111111111\) (negative) \(0 \leqq x \leqq 0111111111111111\) ( 0 , positive) \\
OCT: \(20000000000 \leqq x \leqq 37777777777\) (negative) \(0 \leq x \leqq 17777777777\) ( 0 , positive) \\
HEX: \(80000000 \leqq x \leqq\) FFFFFFFF (negative) \\
\(0 \leqq x \leqq 7 F F F F F F F\) ( 0 , positive)
\end{tabular} \\
\hline
\end{tabular}
*Errors may be cumulative with internal continuous calculations such as \(x, \sqrt[x]{y}, x, \sqrt[3]{ }\) sometimes affecting accuracy:

\section*{Appendix F Specifications}

\section*{Model: fx-7700GE}

\section*{Calculations}

\section*{Basic calculation functions:}

Negative numbers, exponents, parenthetical addition/subtraction/multiplication/division (with priority sequence judgement function - true algebraiç logic).

\section*{Built-in scientific functions:}

Trigonometric/inverse trigonometric functions (units of angular measurement: degrees, radiains, grads); hyperbolic/inverse hyperbolic functions; logarithmicfexponential functions; reciprocals; factorials; square roots; cube roots; powers; roots; squares; decimalsexagesimal conversions; permutations/combinations; \(\pi\); random numbers; internal rounding; fraction functions; engineering and engineering symbol ( 11 types) calculations; negative signing; exponential notation input; parenthetical calculations; coordinate transformations; number of decimal place and significant digit specification

\section*{Matrix operations:}

Addition, subtraction, multiplication; scalar products; matrix transposition; determinants; inversion; squaring; row operations; dimension specification capabilities

Differentials: Extraction of derivative using differential from center point.
Integrations: Using Simpson's rule.

\section*{Equation calculation function:}

Linear equation with two or three unknowns; quadratic equations; recall of solutions and coefficients

\section*{Statistics:}

Standard deviation: number of data; mean; standard deviation (two types); sum; sum of squares; statistical calculation of mode, median, maximum value, minimum value; normal distribution calculation

\section*{Regression:}
number of data; mean of \(x\); mean of \(y\); standard deviation of \(x\) (two types); standard deviation of \(y\) (two types); sum of \(x\); sum of \(y\); sum of squares of \(x\); sum of squares of \(y\); sum of square of \(x\) and \(y\); fixed term; regression coefficient; correlation coefficient; estimated value of \(x\); estimated value of \(y\)
Value memories: 28 standard, expandable up to 528

\section*{Calculation range:}
\(1 \times 10^{-99}\) to \(9,999999999 \times 10^{99}\) and 0 . Internal operation uses 13 -digit mantissa.

\section*{Exponential display: Norm 1: \(10^{-2}>|x|,|x| \geq 10^{10}\)}

Norm 2: \(10^{-9}>|x|,|x| \geq 10^{10}\)

\section*{Rounding:}

Performed according to the specified number of significant digits and number of specified decimal places.

\section*{Graph functions}

Built-in function graphs (rectangular and polar coordinates):
( 40 types) sin, \(\cos , \tan , \sin ^{-1}, \cos ^{-1}, \tan ^{-1}\), sinh, cosh, tanh, \(\sinh ^{-1}, \cosh ^{-1}, \tanh ^{-1}\), k \(\ln , 10^{x}, e^{x}, x^{2}, \sqrt{ }, \sqrt[3]{ }, x^{-1}\)

Graph types: Rectangular coordinate graphs: \(y=f(x)\)
Polar coordinate graphs: \(r=f(\theta)\)
Parametric graphs: \((x, y)=(f(T), g(T))\)
inequality graphs, \((y>f(x), y<f(x), y \geq f(x), y \leq f(x))\)
Integral graphs
\(\because \because\) Probability distribution graphs : : : \(\quad\).
Single-variable statistical graphs (bar histograms; line graphs, norm distribution curves)
Paired-variable statistical graphs (regression line, logarithmic fegressic - curve; exponential regression curve; power regression curve)

Graph memory: Graph function storage, editing, selection, drawing

\section*{Graph functions:}

Range specification; overwrite; trace; plot, line;,scroll, zoom, box and factor zoom ( \(\times\) \(\times 1 / 1\), Original) capabilities

\section*{Programming}

Program commands: Unconditional jumps: Goto, Lbl
Conditional jumps: \(=, 4\), logical operators \((=, \neq,>,<, \geq\), Jumps with count: Isz, Dsz
Subroutine calls: Prog, up to 10 levels of nesting
Number of stored programs: 38 maximum ( P 0 to Pg ; PA to \(\mathrm{PZ} ; \mathrm{Pr}, \mathrm{P} \theta\) )
Check functions: Program checking, debugging
Program area: 4,000 bytes maximum

\section*{Program communications}

\section*{Communication functions:}

Communication of all memory contents: programs, function memories, matrix memorie single- or paired-variable statistical data, value memory and expanded memory content, graph range parameters, factoring ratios, graph functions, formula coefficients
Communication method: Start-stop (asynchronous), half-duplex.
Transmission speed: \(1200,2400,4800,9600(b p s)\)
Parity: Even, odd, none
Bit length: 8 bits

\section*{Stop bit:}

Send: 2 bits
Receive: 1 bit

\section*{General}

Display system:
16 -character \(\times 8\)-line liquid crystal display; 10 -digit mantissa and 2 -digit exponent for calculations; displays binary, octal, hexadecimal, sexagesimal values; fraction

Power supply: Main: Four AAA-size:batteries (LR03 (AM4) or R03 (UM-4)) Memory protection: One CR2032 lithium battery

\section*{Power consumption: 0.1W}

Battery life - Main: Approximately 350 hours (continuous display of 0 ) on battery type LR03 (AM4)
Approximately 200 hours (continuous display of 0 ) on battery type R03 (UM-4)
Approximately 2 years (power switch off) on LR03 (AM4)/R03 (UM-4)
Memory protection: Approximately 1 year

\section*{Auto power off:}

Power is automatically switched off approximately six minutes after last operation.:
Ambient temperature range: \(\quad 0^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F} \sim 104^{\circ} \mathrm{F}\right)\)
Dimensions: \(\quad 20 \mathrm{mmH} \times 85 \mathrm{mmW} \times 172.5 \mathrm{mmD}\left(3 / 4^{\prime \prime} H \times 33 / 8^{\prime \prime} \mathrm{W} \times 63 / 4^{\prime} \mathrm{D}\right)\)
Weight: \(\quad 218.5 \mathrm{~g}(7.7 \mathrm{oz})\) including batteries
Accessories: Hard Case

\section*{Index}

\section*{A}

Absolute value, 34,59
All clear(AC); 17
Alpha function, 13,'16, 17
Alpha Key, 13
Alpha lock, 13
-And, 46, 67
Angular measurement, 16, 23-
Answer(Ans Function), 17, 30
Antilogarithm, 15, 57
Arithmetic calculations; 54
Array memory, 214
Assignment Key, 16, 37
Auto power off, 261

\section*{B}
b(binary), 46, 66
Bar graph, 156
BASE.
arithmetic operations; 66
conversions, 66
logical operations; 67
nagative values, 66
BASE Mode, 18, 44, 66,67
BASE mode calculations, 18;
44, 66
Battery replacement, 258
Battery,memory back-up, 260
Bin(binary), 45, 66
BPS, 228

\section*{C}

Calculation bytes, 50
Calculation execution display, 52 ㅇ
Calculation mode(CAL mode), 22
Calculation priority sequence; 47
Calculations using parentheses, 56

Capacity Key. 14, 206
Central difference, 7.1
Change, 19
Clear coefficients, 133
Clear graphic display; 47
Clear memory, 27.
Clear menu, 27
Clear statistical memories, 27
Clear text display, 47
Clear value memory, 37
CLR(clear), 16, 27
Column, 110
Colon(:), 31
Combination, 34, 61
Comma Key, 16
COMP Mode, 18
Conditional jump destination; 208;211
Conditional jumps, 211
Connect type graphs, 20, 169
Connection, 224
Constant term A, 90, 93
CONT Mode, 19,26
Continuous calculations, 32
Contrast, 19; 26
Coordinate conversion, 35,60
Coordinate function menu, 35 Correlation coefficient \(r, 90,93\), Cosine, 15, 56
Count jumps, 212
Cube root Key, 16, 59 Cursor Keys, 14

\section*{D}
d(decimal), 46, 66
Data communications
ALL, 229
Back up, 253
Equation, 251
Factor, 247
Function memory, 234

Index

Graph function, 248
Matrix, 236
Program, 231
Range, 245
Statistics, 239
Variable memory, 241
Data type selection screen, 226
Dec(decimal), 45, 66
Decimal Key, 16
Decimal places, 23; 64
Defm, 17, 38
Degrees, 23, 56
Degrees-minutes-
seconds(DMS), 35 "
DEL ALL PROGRAMS, 205
Delete Key, 17, 29
Delete matrix, 102 :
DELETE PROGRAM, 205
Derivative, 70
Dêterminant, 118
Differential calculation, 70
Display formàt, 才6; 25, 64
Display result command; 202, 207
DRAW mode, 20, 156, 159
DRAW TYPE, 20; 169.
Drawing graphs from memory, 168
Dsz, 208, 212

\section*{E}

Editing, 28
Editing functions in memory, 166
Engineering mode, 25,63
Engineering symbols, 35,63
EQUA Mode, 18, 126 .
ERASE ALL DATA, 80
ERASE ALL MAT, 103
ERASE EQUATION, 127
ERASE MATRIX, 102

Error messages, 29, 48, 50, 205, 269
Estimated value of \(x, 90,93\)
Estimated value of \(y, 90,93\)
Execute Key, 17
EXIT Key, 14
EXP mode, 21, 87, 95
Exponent Key,17
Exponential display formats, 25 ;
\[
51,62,64
\]

Exponential functions, 57
Exponential Key, 15, 57
Exponential regression, 87,95

\section*{F}

Factor function, 187
Factorial, 34, 59
Fix, 23, 64
Fraction extraction, 34 , 5
Fractions, 62 ,
Function delete, 40
Function Key; 13, 22
Function list; 40 .
Function memory, 39; 197-
Function memory menu, 16, 39
Function recall, 40
Function reference, 263
Function store, 39

\section*{G}

Goto, 208, 210
Gradients/Grads, 23, 56
Graph Key, 14
GRAPH Mode, 18, 161
Graph scroll function, 183
GRAPH TYPE, 20, 141
Graph-Text Key(G-T), 14, 47
Graphic display; 47
Graphing, 136
Graphing, built-in scientific functions, 141, 145

Graphing; manually entered
functions, \(143,146,148\), \(150:\)
Graphing examples, 195

\section*{H}
h(hexadecimal), 46, 66
Hex(hexadecimal); 45, 66 , m
Hyperbolic cosine, 33; 58 .
Hyperbolic function menu(HYP), 33
Hyperbolic sine, 33; 58
Hyperbolic tangent, 33,58

\section*{\(\square\)}

Icon, 18
Increasing value memories; 37
INQ Mode, 20, 150
Inequality graphis, 150
Initialize, 262
Initialize, range, 140
Input capacity, 50
Input format for matrix data; 100
input ranges, 271
Inputting, 28
Insert cursor, 17, 29
Insert Key, 17, 29
Integer, 34, 59
Integration calculations, 73
Integration graphs, 153
Inverse cosine, 15
Inverse hyperbolic cosine, 33 , 56
Inverse hyperbolic sine, 33, 56
Inverse hyperbolic tangent, 33, 56
Inverse matrix, 121
inverse sine, 15
Inverse tangent, 15
isz, 208, 212 .

\section*{J}

Jump Command Menu, 208
K
Keyboard, 13

\section*{L}

Label(Lbbl), 208, 210
LIN mode, 21, 85; 93
Line function, 180
Line graph, 158
Linear equations
three unknowns, 18, 129
two unknowns, 127
Linear regression, 85, 93
LINK Mode, 19, 226
In, 15
LOG móde, 21, 86; 94
Logarithm,
common, 15, 57
natural, 15,57
Logarithmic functions, 57
Logarithmic regression, 86,94
Logical operations, 46,67
Low battery message, 258

\section*{M}
[[M]Disp] Key setting(M-DSP/
COPY), 21
Main Menu, 18
Main routine, 213
MAT Mode, 18,98
Matrix answer memory(Mat Ans), 99
Matrix calculations, 18,98
Matrix dimension, 101
Matrix editing screen, 103
Matrix list, 99
Maximurn value for input data, 84, 92
Mean of data, 84, 90

\section*{Index}

Median value for input data, 84 , 92
Minimum value for input data, 84, 92
Mode Display Key, 14
Mode value for input data, 84 , 92
Modifying a matrix, 103
Multistatements, 30

\section*{N}

Neg, 46, 66
Negative values, 17
Nesting, 213
Newline Function, 17, 207
NON-(DRAW) mode, 21,
NON-(STO) mode, 20, 78, 85
Norm 1(Norm 2) mode, 25, 51, \(64^{\circ}\)
Normal distribution curve, 158
Normalized variate \(\mathrm{t}(\mathrm{x}), 84,154\)
Not, 46, 67
Number of bytes, 50,206
Number of data items, 78,80 .
Numeric function menu( NUM ) 34

\section*{0}
o(octal), 46, 66
Oct(octal), 45, 66
Or, 46, 67
Overdrawing built-in function
graphs, 1.42, 144; 151
Overflow, 50, 269
Overwrite Function, 193
P
Paired-variable statistic
calculation(REG MODEL), 21, 85
Paired-variable statistical graphs, 159

Paired-variable statistics, 85
Parameters, setting
communications, 228
Parametric graphs, 148,
Parity, 228
Permutation, 34, 61
Pi Key, 17
Plot function, 175
Plot type graphs, 20, 169
Plot, point, 175
Ply Coe, 43
Ply \(X_{1}\left(X_{2}\right), 43\)
Pointer, 170, 175,180,486
POL mode, 20, 145
Polar coordinate graphs, 145
Polar coordinates, 35, 60
Power Key, 16, 57
Power regression, 88,96
Power supply, 258
Powers, 16
PRGM Mode, 18, 200
Primary functions, 13
PRM mode, 20, 148
Probability distribution graphs, 154
Probability function menu(PRB), 34
Program area, 201
Program bytes, 202
Program commands, 207.
Program function menu,207
Program
delete, 205
execute, 203
input, 202
memory, 202
Programming, 200
Prompt command for value input, 202, 207
Punctuation Symbol Menu, 209
PWR mode, 21, 88,96

Index
Q.

Quadratic equations, 43, 130
Quit Key, 14
R
Radians/rads, 23, 56
Random number, 34
Range Key, 14, 136
Range of graph, 136
Range parameter screen, 136
REC mode, 20, 141
Receive mode, 226
Reciprocal Key, 15, 59
Rectangular coordinates, 35, 60
Rectangular coordinates graphs, 141
REG Mode, 18,85
Regression, 18, 85
Regression/Estimated Value
Menu, 90
Relational operator, 208, 211
Relational Operator Menu, 208
Replay function, 14, 32
RESET Mode, 19, 261
Root Key, 16, 57
Rounding, 34, 64
Row+, 104, 106, 221
x Row, 104, 105, 220
x Row+, 104; 105, 220
Row operation, 104

\section*{S}

Scalar product, 105, 116, 220
Sci, 24, 64
Scientific functions, 16,33
Screen copy function, 255
Screen Copy Key, 14, 255
Scrolling graphs, 174
SD Mode, 18, 78
Send mode, 226

Set up display, 19
Set up display function key menus, 20
Set up Key, 14
Shift Key, 13
Shifted functions, 13
Significant digits, 24,64
\(\operatorname{sim} \mathrm{Coe}, 42\)
\(\operatorname{Sim} X(Y, Z), 42\)
Simultaneous graping(SIML GRAPH), 21
Simultaneous linear equations, 42
Sine, 15, 56
Single-variable statistical graphs, 156
Single-variable statistics, 18,78
Specifying the value range, \(144,147,149,152\)
Speed(BPS), 228
Square Key, 15, 59
Square Root Key, 15, 59
Squaring a matrix, 122
Stacks, 48
Standard deviation, 78,91
Standard normal distribution curve, 154
Statistical calculations, paired variables, 85 single variables, 78
Statistical data storage(STAT DATA), 20, 78, 80, 85
Statistical graph drawing(STAT: GRAPH), 20, 156, 159
Statistical/Representative Menu, 84
Statistics, edit data, 81
STO mode, 20, 80
Subroutines, 213
Sum Data Menu, 84, 90
Swap, 104, 219

\section*{Index}

\section*{T}

Tangent, 15,56
Text dispaly, 47
Text messages, 218
Time calculation, 35
Trace function, 170
Transposition matrix, 120
Trigonometric functions, 15,56 :
Trigonometric functions,
inverse; 15,56
True algebraic \(\operatorname{logic}^{2} 47\)
Type A function, 48
Type B function, 32, 47

\section*{\(\square\)}

Unconditional jumps, 209
V
Value input and output
limitations, 32
Value memory, 36
VAR(Variable) menu, 16, 41
Variable \(\operatorname{Key}(\chi, \theta, T), 14,71\); 142

\section*{X}

Xnor, 46, 67
Xor, 46, 67

\section*{Z}

Zoom, Box; 185
Zoom factor, 188
Zoom fünctions, 185

Key Inde
\begin{tabular}{|c|c|c|c|}
\hline Key & Primary Function & \[
\begin{aligned}
& \text { combined sHIFT } \\
& \text { with }
\end{aligned}
\] & combined
with \\
\hline Trace & Turns trace function on/off. & & \\
\hline F1 & Selects tst function menu item. & & \\
\hline Zoom & Turns zoom function on. & & \\
\hline Fer & Selects 2nd function menu item. & & \\
\hline Plot & Turns plot function on. & & \\
\hline F3) & Selects 3rd function menu item: & & \\
\hline Line & Turns line function on. & & \\
\hline F4 & Selects 4th function menu item. & & \\
\hline Cls & Clears the graph screen. & & \\
\hline F5 & Selects 5th function menu item. & & \\
\hline Coord & Displays graph coordinates. & & \\
\hline F6. & Selects 6 6th function menu item. & , & \\
\hline SHIF & Activates shift functions of other keys and function menus. & & \\
\hline \[
\frac{\text { AM-LOCK }}{\text { ALPHA }}
\] & Allows entry of alphanumeric characters shown in red. & Locks/Unlocks entry of alphanumeric characters. & \\
\hline IT & Backsteps to the previous & Returns directly to the & \\
\hline EXIT & menu. & initial screen of the mode. & \\
\hline \begin{tabular}{|l|l|} 
SET UP \\
MENU
\end{tabular} & Returns to the Main Menu . & Shows the set up display. & \\
\hline \[
\begin{aligned}
& \overline{G-\int d x}: \\
& G \leftrightarrow T
\end{aligned}
\] & Switches display between graph \& text screens. & Provides graphic integral : solution. & Enters colon. \\
\hline \[
\overline{\mathrm{d} / \mathrm{dx} \mathrm{r}}
\] & Activates graph function. & Provides numerical differential solution. & Enters charact \\
\hline \[
\begin{array}{r}
\theta \\
\text { Ranges }
\end{array}
\] & Displays range parameter input screen. & & Enters characte \(\theta\). \\
\hline \[
\begin{aligned}
& \text { CAPA: } \\
& \text { 回Disp }
\end{aligned}
\] & Displays current mode settings. (press \& hold) Transfers screen shot to personal computer. & Press and hold to display remaining memory capacity. & Enters semicol \\
\hline ( \({ }^{\text {a }}\) & Moves cursor upward. Scrolls screen. & Switches to next function in trace mode. & \\
\hline (1) & Moves cursor downward. Scrolls screen. & Switches to next function in trace mode. & \\
\hline ( & Moves cursor to left. Scrolls screen. Press after EXE to display calculation from end & & \(\cdots\) \\
\hline
\end{tabular}

Key Index
\begin{tabular}{|c|c|c|c|}
\hline Key & Primary Function & combined with & combined with \(\qquad\) \\
\hline ( & Moves cursor to right. Scrolls screen. Press after EXE to display calculation from beginning. & & \\
\hline \[
\begin{aligned}
& \bar{s} d x \text { A } \\
& x, \theta, \mathbf{T}
\end{aligned}
\] & Allows input of variables \(X, \theta\), and T . & Provides numerical integral solution. & Enters letter A. \\
\hline \[
\overbrace{}^{10^{x}}
\] & Press before entering value to calculate common logarithm. & Press before entering exponent value of 10 . & Enters letter B. \\
\hline \[
e^{e^{x}}
\] & Press before entering value to calculate natural logarithm. & Press before entering exponent value of \(e\). & Enters letter C. \\
\hline \[
\sin ^{-10}
\] & Press before entering value to calculate sine. & Press before entering value to calculate inverse sine. & Enters Fetter D . \\
\hline \[
\begin{gathered}
\cos ^{-1} \mathrm{E} \\
\cos \\
\hline
\end{gathered}
\] & Press before entering value to calculate cosine. & Press before entering value to calculate inverse cosine. & Enters letter E. \\
\hline \[
\tan ^{-1} \mathrm{~F}
\] & Press before entering value to calculate tangent. & Press before entering value to calculate inverse tangent. & Enters letter \\
\hline \[
a b / c
\] & Press between entering fraction values. Converts iraction to decimal. & Displays improper fraction. & Enters letter G. \\
\hline \[
x^{H}
\] & Press after entering value to calculate square. & Press before entering value to calculate square root. & Enters letter H . \\
\hline  & Enter open parenthesis in formula. & Press before entering value to calculate cube root. & Enters letter I. \\
\hline  & Enter close parenthesis in formula. & Press after entering value to calculate reciprocol. & Enters letter \(\downarrow\) J. \\
\hline \[
\rightarrow
\] & Assigns value to a value memory name. & Enters comma. & Enters letter K. \\
\hline  & Press between two values to make second value exponent of first. & Press between entering values for \(x\) \& y to show xth root of \(y\). & Enters letter L. \\
\hline  & \begin{tabular}{l}
Enters number 7. \\
Enters number 8.
\end{tabular} & Displays program command menu. & \begin{tabular}{l}
Enters leater M. \\
Enters letter N.
\end{tabular} \\
\hline \[
9
\] & Enters number 9 . & & Enters letter 0. \\
\hline INS
DEL
\(\square\) & Deletes character at current cursor location. & Allows insertion of characters at cursor location.
\[
284-
\] & \[
\ldots .
\] \\
\hline
\end{tabular}

Key Index
\begin{tabular}{|c|c|c|c|}
\hline Key & Primary Function & \begin{tabular}{l}
combined \\
with
\end{tabular} & combined with \\
\hline \[
\frac{\mathrm{aFF}}{\mathrm{ACP}^{\text {cN }}}
\] & Turns power on. Clears the display. & Turns power off. & \\
\hline 4 & Enters number 4. & & Enters letter P. \\
\hline \[
\begin{array}{|c|}
\hline \text { MATH Q } \\
\hline 5
\end{array}
\] & Enters number 5. & Display built in function menu. & Enters letter Q. \\
\hline \[
6
\] & Enters number 6. & Displays variable data menu. & Enters letter R. \\
\hline & Multiplication function. & & Enters letter S . \\
\hline & Division function. & & Enters letter T . \\
\hline \(\mathrm{DRG}^{\text {DR }}\) & Enters number 1. & Sets/converts unit of angular measurement. & Enters letter U. \\
\hline \[
\begin{gathered}
\text { पISP } \mathrm{V} \\
\hline 2
\end{gathered}
\] & Enters number 2. & Displays menu of display format choices. & Enters letter V. \\
\hline \[
\begin{gathered}
\text { CLL W } \\
\hline
\end{gathered}
\] & Enters number 3. & Displays memory clear menu. & Enters letter W. \\
\hline + & \begin{tabular}{l}
Addition function. \\
Specifies positive value.
\end{tabular} & & Enters letter X \\
\hline & Subtraction function. Specifies negative value. & & Enters letter Y \\
\hline \[
\begin{aligned}
& \text { EMEEM } z \\
& 0 \\
& \hline
\end{aligned}
\] & Enters number 0 . & Displays function memory menu. & Enters letter Z. \\
\hline Defm & Enters decimal point. & Shows memory status. & Enters open bracket. \\
\hline \[
\pi
\] & Allows entry of exponent. & Inputs value of pi . Enters pi symbol. & Enters close bracket. \\
\hline \[
\begin{gathered}
\text { ABS SPACE } \\
1-1 \\
\hline
\end{gathered}
\] & Enter before value to specify as negative. & Recalls most recent calculation result. & Enters a blank space. \\
\hline EXE & Displays result of calculation. & Inputs a new line. & \\
\hline
\end{tabular}

\section*{This file has been downloaded from:}

\section*{www.UsersManualGuide.com}

User Manual and User Guide for many equipments like mobile phones, photo cameras, monther board, monitors, software, tv, dvd, and othes..
Manual users, user manuals, user guide manual, owners manual, instruction manual, manual owner, manual owner's, manual guide, manual operation, operating manual, user's manual, operating instructions, manual operators, manual operator, manual product,
documentation manual, user maintenance, brochure, user reference, pdf manual```


[^0]:    -The contents of this manual are subject to change without notice.

    - No part of this manual may be reproduced in any form without the express written consent of the manufacturer.
    - The options described in-Chapter 9 of this manual may not be available in certain geographic areas. For full details on availability in your area, contact your nearest CASIO dealer or distributor.

[^1]:    You cannot assign values to these value memories while the above calculations are he maximum number of value memories possible is 528 (an increase of 500 ) ing performed. You should also clear the value memories before starting the above opt
    tions. Be especially careful during programmed calculations to avoid problems caus by values mistakenly assigned to memories that are used by the calculator.

